Skip to main content

Demonstrating the Evolution of Complex Genetic Representations: An Evolution of Artificial Plants

  • Conference paper
  • First Online:
Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2723))

Included in the following conference series:

Abstract

A common idea is that complex evolutionary adaptation is enabled by complex genetic representations of phenotypic traits. This paper demonstrates how, according to a recently developed theory, genetic representations can self-adapt in favor of evolvability, i.e., the chance of adaptive mutations. The key for the adaptability of genetic representations is neutrality inherent in non-trivial genotype-phenotype mappings and neutral mutations that allow for transitions between genetic representations of the same phenotype. We model an evolution of artificial plants, encoded by grammar-like genotypes, to demonstrate this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Altenberg. Genome growth and the evolution of the genotype-phenotype map. In W. Banzhaf and F. H. Eeckman, editors, Evolution and Biocomputation: Computational Models of Evolution, pages 205–259. Springer, Berlin, 1995.

    Google Scholar 

  2. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, 1996.

    Google Scholar 

  3. F. Gruau. Automatic definition of modular neural networks. Adaptive Behaviour, 3:151–183, 1995.

    Article  Google Scholar 

  4. T. F. Hansen and G. P. Wagner. Epistasis and the mutation load: A measurementtheoretical approach. Genetics, 158:477–485, 2001.

    Google Scholar 

  5. T. F. Hansen and G. P. Wagner. Modeling genetic architecture: A multilinear model of gene interaction. Theoretical Population Biology, 59:61–86, 2001.

    Article  MATH  Google Scholar 

  6. G. S. Hornby and J. B. Pollack. The advantages of generative grammatical encodings for physical design. In Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), pages 600–607. IEEE Press, 2001.

    Google Scholar 

  7. G. S. Hornby and J. B. Pollack. Evolving L-systems to generate virtual creatures. Computers and Graphics, 25:1041–1048, 2001.

    Article  Google Scholar 

  8. H. Kitano. Designing neural networks using genetic algorithms with graph generation systems. Complex Systems, 4:461–476, 1990.

    MATH  Google Scholar 

  9. S. Lucas. Growing adaptive neural networks with graph grammars. In Proc. of European Symp. on Artificial Neural Netw. (ESANN 1995), pages 235–240, 1995.

    Google Scholar 

  10. M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of optimization by building and using probabilistic models. Technical Report IlliGAL-99018, Illinois Genetic Algorithms Laboratory, 1999.

    Google Scholar 

  11. P. Prusinkiewicz and J. Hanan. Lindenmayer Systems, Fractals, and Plants, volume 79 of Lecture Notes in Biomathematics. Springer, New York, 1989.

    MATH  Google Scholar 

  12. P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer, New York, 1990.

    MATH  Google Scholar 

  13. R. Riedl. A systems-analytical approach to macro-evolutionary phenomena. Quarterly Review of Biology, 52:351–370, 1977.

    Article  Google Scholar 

  14. M. Toussaint. On the evolution of phenotypic exploration distributions. In C. Cotta, K. De Jong, R. Poli, and J. Rowe, editors, Foundations of Genetic Algorithms 7 (FOGA VII). Morgan Kaufmann, 2003. In press.

    Google Scholar 

  15. G. P. Wagner and L. Altenberg. Complex adaptations and the evolution of evolvability. Evolution, 50:967–976, 1996.

    Article  Google Scholar 

  16. G. P. Wagner, G. Booth, and H. Bagheri-Chaichian. A population genetic theory of canalization. Evolution, 51:329–347, 1997.

    Article  Google Scholar 

  17. G. P. Wagner, M. D. Laubichler, and H. Bagheri-Chaichian. Genetic measurement theory of epistatic effects. Genetica, 102/103:569–580, 1998.

    Article  Google Scholar 

  18. R. Watson and J. Pollack. A computational model of symbiotic composition in evolutionary transitions. Biosystems, Special Issue on Evolvability, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toussaint, M. (2003). Demonstrating the Evolution of Complex Genetic Representations: An Evolution of Artificial Plants. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45105-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40602-0

  • Online ISBN: 978-3-540-45105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics