Skip to main content

Incomplete Directed Perfect Phylogeny

  • Conference paper
  • First Online:
Combinatorial Pattern Matching (CPM 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1848))

Included in the following conference series:

Abstract

Perfect phylogeny is one of the fundamental models for studying evolution. We investigate the following generalization of the problem: The input is a species-characters matrix. The characters are binary and directed, i.e., a species can only gain characters. The difference from standard perfect phylogeny is that for some species the state of some characters is unknown. The question is whether one can complete the missing states in a way admitting a perfect phylogeny. The problem arises in classical phylogenetic studies, when some states are missing or undetermined. Quite recently, studies that infer phylogenies using inserted repeat elements in DNA gave rise to the same problem. The best known algorithm for the problem requires O(n 2 m) time for m characters and n species. We provide a near optimal ÕO(nm)-time algorithm for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Agarwala and D. Fernández-Baca. A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM Journal on Computing, 23(6):1216–1224, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM Journal on Computing, 10(3):405–421, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Benham, S. Kannan, M. Paterson, and T.J. Warnow. Hen’s teeth and whale’s feet: generalized characters and their compatibility. Journal of Computational Biology, 2(4):515–525, 1995.

    Article  Google Scholar 

  4. H. L. Bodlaender, M. R. Fellows, and T. J. Warnow. Two strikes against perfect phylogeny. In W. Kuich, editor, Proc. 19th IC ALP, pages 273–283, Berlin, 1992. Springer. Lecture Notes in Computer Science, Vol. 623.

    Google Scholar 

  5. J. H. Camin and R. R. Sokal. A method for deducing branching sequences in phylogeny. Evolution, 19:409–414, 1965.

    Article  Google Scholar 

  6. L. Dollo. Le lois de I’évolution. Bulletin de la Societé Belge de Géologie de Paléontologie et d’Hydrologie, 7:164–167, 1893.

    Google Scholar 

  7. J. Felsenstein. Inferring Phylogenies. Sinaur Associates, Sunderland, Massachusetts, 2000. In press.

    Google Scholar 

  8. L. R. Foulds and R. L. Graham. The Steiner problem in phylogeny is NP-complete. Advances in Applied Mathematics, 3:43–49, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. C. Golumbic. Matrix sandwich problems. Linear algebra and its applications, 277:239–251, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. Journal of Algorithms, 19:449–473, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19–28, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.

    Google Scholar 

  13. M. Henzinger, V. King, and T.J. Warnow. Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica, 24:1–13, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Holm, K. de Lichtenberg, and M. Thorup. Polylogarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge and biconnectivity. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC-98), pages 79–89, New York, May 23–26 1998. ACM Press.

    Google Scholar 

  15. S. Kannan and T. Warnow. A fast algorithm for the computation and enumeration of perfect phylogenies. SIAM Journal on Computing, 26(6):1749–1763, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Klinz, R. Rudolf, and G. J. Woeginger. Permuting matrices to avoid forbidden submatrices. Discrete applied mathematics, 60:223–248, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. A. Meecham and G. F. Estabrook. Compatibility methods in systematics. Annual Review of Ecology and Systematics, 16:431–446, 1985.

    Article  Google Scholar 

  18. M. Nikaido, A. P. Rooney, and N. Okada. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: Hippopotamuses are the closest extant relatives of whales. Proceedings of the National Academy of Science USA, 96:10261–10266, 1999.

    Article  Google Scholar 

  19. W. J. Le Quesne. The uniquely evolved character concept and its cladistic application. Systematic Zoology, 23:513–517, 1974.

    Article  Google Scholar 

  20. M. A. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification, 9:91–116, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. L. Swofford. PAUP, Phylogenetic Analysis Using Parsimony (and Other Methods). Sinaur Associates, Sunderland, Massachusetts, 1998. Version 4.

    Google Scholar 

  22. M. Thorup. Decremental dynamic connectivity. Journal of Algorithms, 33:229–243, 1999.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pe’er, I., Shamir, R., Sharan, R. (2000). Incomplete Directed Perfect Phylogeny. In: Giancarlo, R., Sankoff, D. (eds) Combinatorial Pattern Matching. CPM 2000. Lecture Notes in Computer Science, vol 1848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45123-4_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45123-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67633-1

  • Online ISBN: 978-3-540-45123-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics