Skip to main content

Axisymmetric Liquid Columns at Rest and Under Rotation

  • Chapter
  • First Online:
Capillary Surfaces

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 178))

  • 648 Accesses

Abstract

An axisymmetric liquid surface has the advantage that the capillary equation reduces to an ordinary differential equation of order two. In the absence of gravity and rotation its solutions are unduloids or nodoids. The solutions in the presence of gravity and rotation are easily obtained by a Runge—Kutta integration. Liquid columns between coaxial circular disks have repeatedly served as model systems for studying convection during crystal growth. Their axial deformations can be classified by the number of nodes in the axial direction, and their lateral deformations by the number of nodes in the azimuthal direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown RA, Scriven LE: The shape and stability of rotating liquid drops. Proc. Roy. Soc. London A371 (1980) 331–357

    Google Scholar 

  2. Carruthers JR, Gibson EG, Klett MG, Facemire BR: Studies of rotating liquid floating zones on Skylab IV. AIAA Paper 75-692, Denver, CO (1975)

    Google Scholar 

  3. Chandrasekar S: The stability of a rotating liquid drop. Proc. Roy. Soc. London A286 (1965) 1–26

    Google Scholar 

  4. Coriell SR, Hardy SC, Cordes MR: Stability of liquid zones. J. Colloid Interf. Sci. 60 (1977) 126–135

    Article  CAS  Google Scholar 

  5. Da-Riva I, Martinez I: Floating zone stability. Proceedings of the Third European Symposium on Materials Sciences in Space, ESA SP-142 (1979) 67–73

    Google Scholar 

  6. Heywang W: Zur Stabilität senkrechter Schmelzzonen. Z. Naturforsch. 11a (1956) 238–243

    CAS  Google Scholar 

  7. Jeans JH: Problems of cosmology and stellar dynamics. Cambridge University Press, Cambridge (1919) 40

    Google Scholar 

  8. Langbein D, Rischbieter F: Form, Schwingungen und Stabilität von Flüssigkeitsgrenzflächen. Forschungsbericht W 86-29 des BMFT (1986) 1–130

    Google Scholar 

  9. Langbein D: Fluid physics. In: Research in Space—The German Spacelab Missions. P.R. Sahm, M.H. Keller, B. Schiewe (eds.) WPF Cologne (1993) 91–114

    Google Scholar 

  10. Langbein D, Falk F, Großbach R, Heide W, Bauer H, Meseguer J, Perales S, Sanz A: LICOR-liquid columns’ resonances. Scientific Results of the German Spacelab Mission D2. P.R. Sahm, M.H. Keller, B. Schiewe (eds.) WPF Cologne (1995) 209–219

    Google Scholar 

  11. Lee CP, Wang TG: The centering dynamics of a thin liquid shell in capillary oscillations. J. Fluid Mech. 188, 411–435 (1988)

    Article  Google Scholar 

  12. Lee CP, Anilkumar AV, Hmelo AB, Wang TG: Equilibrium of liquid drops under the effects of rotation and acoustic flattening: results from USML-2 experiments in space. J. Fluid Mech. 354 (1998) 43–67

    Article  Google Scholar 

  13. Martinez I: Liquid column stability — experiment 1 ES-331. ESA SP-222 (1984) 31–36

    Google Scholar 

  14. Martinez I.: Stability of long liquid columns in Spacelab-D1. ESA SP-256 (1987) 235–240

    Google Scholar 

  15. Martinez I, Haynes JM, Langbein D: Fluid statics and capillarity. In: Fluid Science and Materials Science in Space, HU Walter (ed.), Springer, Berlin, Heidelberg (1987) 53–81

    Google Scholar 

  16. Meseguer J: The breaking of axisymmetric slender liquid bridges. J. Fluid Mech. 130 (1983a) 123–151

    Article  Google Scholar 

  17. Meseguer J: The influence of axial microgravity on the breakage of axisymmetric slender liquid bridges. J. Cryst. Growth 62 (1983b) 577–586

    Article  Google Scholar 

  18. Minkowski H: Kapillarität. In: Encyklopädie der Mathematischen Wissenschaften, Vol. 5. A. Sommerfeld (ed.) Teubner, Leipzig (1921)

    Google Scholar 

  19. Myshkis AD, Babskii VG, Kopachevskii ND, Slobozhanin LA, Tyuptsov AD: Low-Gravity Fluid Mechanics [translated by R.S. Wadhwa]. Springer, Berlin, Heidelberg (1976)

    Google Scholar 

  20. Padday JF, Pitt AR: The stability of axisymmetric menisci. Phil. Trans. Roy. Soc. London 275 (1973) 489–528

    Article  Google Scholar 

  21. Trinh E, Wang TG: Large-amplitude free and driven drop-shape oscillations: experimental observations, J. Fluid Mech. 122 (1982) 315–338

    Article  Google Scholar 

  22. Trinh EH, Leung E: Ground-based studies of the vibrational and rotational dynamics of acoustically levitated drops and shells. AIAA-90-0315 (1990)

    Google Scholar 

  23. Wang TG, Saffren MM, Elleman DD: Drop dynamics in space. ESA-SP 114 (1976) 405–419

    Google Scholar 

  24. Wang TG, Trinh E, Croonquist AP, Elleman DD: The shapes of rotating free drops: Spacelab experimental results. Phys. Rev. Lett. 56 (1986) 452–455

    Article  Google Scholar 

  25. Wang TG, Anilkumar AV, Lee CP, Lin KC: Bifurcation of rotating liquid drops: results of USML-1 experiments in space. J. Fluid Mech. 276 (1994) 389–403

    Article  Google Scholar 

  26. Wang TG, Anilkumar AV, Lee CP: Oscillations of liquid drops: results from USML-1 experiments in space. J. Fluid Mech. 308 (1996) 1–14

    Article  CAS  Google Scholar 

  27. Vega JM, Perales JM: Almost cylindrical isorotating liquid bridges for small Bond numbers. ESA SP-191 (1983) 247–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langbein, D. (2002). Axisymmetric Liquid Columns at Rest and Under Rotation. In: Langbein, D. (eds) Capillary Surfaces. Springer Tracts in Modern Physics, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45267-2_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45267-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41815-3

  • Online ISBN: 978-3-540-45267-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics