Skip to main content

Reasoning about Surfaces Using Differential Zero and Ideal Decomposition

  • Conference paper
  • First Online:
Automated Deduction in Geometry (ADG 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2061))

Included in the following conference series:

Abstract

This paper presents methods for zero and ideal decomposition of partial differential polynomial systems and the application of these methods and their implementations to deal with problems from the local theory of surfaces. We show how to prove known geometric theorems and to derive unknown relations automatically. In particular, an algebraic relation between the first and the second fundamental coefficients in a very compact form has been derived, which is more general and has smaller degree than a relation discovered previously by Z. Li. Moreover, we provide symmetric expressions for Li’s relation and clarify his statement. Some examples of theorem proving and computational difficulties encountered in our experiments are also discussed.

Acknowledgements

Part of this work has been supported by the SPACES Project (http://wwwspaces. lip6.fr/) and by the Chinese National 973 Project NKBRSF G19980306.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubry, P. (1999). Ensembles triangulaires de polynômes et résolution de systémes algébriques. Implantation en Axiom. Ph.D. thesis, Université Paris VI, France.

    Google Scholar 

  2. Aubry, P., Lazard, D., Moreno Maza, M. (1999). On the theories of triangular sets. J. Symb. Comput. 28: 105–124.

    Article  MATH  MathSciNet  Google Scholar 

  3. Boulier, F., Lazard, D., Ollivier, F., Petitot, M. (1995). Representation for the radical of a finitely generated differential ideal. In: Levelt, A. H. M. (ed.): Proc. ISSAC’ 95, Montreal, Canada, ACM Press, New York, pp. 158–166.

    Chapter  Google Scholar 

  4. Boulier, F., Lazard, D., Ollivier, F., Petitot, M. (1998). Computing representation for radicals of finitely generated differential ideals. Preprint, LIFL, Universit’ Lille I, France.

    Google Scholar 

  5. Boulier, F., Lemaire, F. (2000). Computing canonical representatives of regular differential ideals. In: Traverso, C. (ed.): Proc. ISSAC’ 2000, St. Andrews, Scotland, ACM Press, New York, pp. 38–47.

    Google Scholar 

  6. Buchberger, B. (1985). Gröbner bases: An algorithmic method for polynomial ideal theory. In: Bose, N. K. (ed): Multidimensional Systems Theory, D. Reidel, Dordrecht, pp. 184–232.

    Google Scholar 

  7. Carrà Ferro, G., Gallo, G. (1990). A procedure to prove statements in differential geometry. J. Automat. Reason. 6: 203–209.

    Article  MATH  MathSciNet  Google Scholar 

  8. Chou, S.-C., Gao, X.-S. (1993). Automated reasoning in differential geometry and mechanics using the characteristic set method-Part I. An improved version of Ritt-Wu’s decomposition algorithm. Part II. Mechanical theorem proving. J. Automat. Reason. 10: 161–189.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hubert, E. (1999). The diffalg package. http://daisy.uwaterloo.ca/~ehubert/Diff alg/.

  10. Hubert, E. (2000). Factorization-free decomposition algorithms in differential algebra. J. Symb. Comput. 29: 641–662.

    Article  MATH  MathSciNet  Google Scholar 

  11. Kalkbrener, M. (1991). Three Contributions to Elimination Theory. Ph.D. thesis, Johannes Kepler University, Austria.

    Google Scholar 

  12. Kalkbrener, M. (1998). Algorithmic properties of polynomial rings. J. Symb. Comput. 26: 525–581.

    Article  MATH  MathSciNet  Google Scholar 

  13. Klingenberg, W. (1978). A Course in Differential Geometry. Translated by D. Hoffman. Springer, New York.

    MATH  Google Scholar 

  14. Kreyszig, E. (1968). Introduction to Differential Geometry and Riemannian Geometry. University of Toronto Press, Tornoto.

    MATH  Google Scholar 

  15. Li, H. (1997). Mechanical theorem proving in differential geometry-Local theory of surfaces. Sci. China (Ser. A) 40: 350–356.

    Article  MATH  Google Scholar 

  16. Li, H., Cheng, M. (1998). Clifford algebraic reduction method for automated theorem proving in differential geometry. J. Automat. Reason. 21: 1–21.

    Article  MathSciNet  Google Scholar 

  17. Li, Z. (1995). Mechanical theorem proving in the local theory of surfaces. Ann. Math. Artif. Intell. 13: 25–46.

    Article  MATH  Google Scholar 

  18. Li, Z., Wang, D. (1999). Coherent, regular and simple systems in zero decompositions of partial differential systems. Syst. Sci. Math. Sci. 12 (Suppl.): 43–60.

    MATH  Google Scholar 

  19. Ritt, J. F. (1950). Differential Algebra. Amer. Math. Soc., New York.

    MATH  Google Scholar 

  20. Rosenfeld, A. (1959). Specializations in differential algebra. Trans. Amer. Math. Soc. 90: 394–407.

    Article  MATH  MathSciNet  Google Scholar 

  21. Seidenberg, A. (1956). An elimination theory for differential algebra. Univ. California Publ. Math. (N.S.) 3(2): 31–66.

    MathSciNet  Google Scholar 

  22. Wang, D. (1995). A method for proving theorems in differential geometry and mechanics. J. Univ. Comput. Sci. 1: 658–673.

    MATH  Google Scholar 

  23. Wang, D. (1996). An elimination method for differential polynomial systems I. Syst. Sci. Math. Sci. 9: 216–228.

    MATH  Google Scholar 

  24. Wang, D. (1998). Decomposing polynomial systems into simple systems. J. Symb. Comput. 25: 295–314.

    Article  MATH  Google Scholar 

  25. Wang, D. (2000). Automated reasoning about surfaces (progress report). In: Richter-Gebert, J., Wang, D. (eds.): Proc. ADG 2000, Zurich, Switzerland, September 25-27, 2000, pp. 183–196.

    Google Scholar 

  26. Wu, W.-t. (1979). On the mechanization of theorem-proving in elementary differential geometry (in Chinese). Sci. Sinica Special Issue on Math. (I): 94–102.

    Google Scholar 

  27. Wu, W.-t. (1987). A constructive theory of differential algebraic geometry based on works of J. F. Ritt with particular applications to mechanical theorem-proving of differential geometries. In: Gu, C., Berger, M., Bryant, R. L. (eds.): Differential Geometry and Differential Equations, LNM 1255, Springer, Berlin, pp. 173–189.

    Chapter  Google Scholar 

  28. Wu, W.-t. (1989). On the foundation of algebraic differential geometry. Syst. Sci. Math. Sci. 2: 289–312.

    Google Scholar 

  29. Wu, W.-t. (1991). Mechanical theorem proving of differential geometries and some of its applications in mechanics. J. Automat. Reason. 7: 171–191.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aubry, P., Wang, D. (2001). Reasoning about Surfaces Using Differential Zero and Ideal Decomposition. In: Richter-Gebert, J., Wang, D. (eds) Automated Deduction in Geometry. ADG 2000. Lecture Notes in Computer Science(), vol 2061. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45410-1_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-45410-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42598-4

  • Online ISBN: 978-3-540-45410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics