Skip to main content

Action of Modular Correspondences around CM Points

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2369))

Included in the following conference series:

Abstract

We study the action of modular correspondences in the p-adic neighborhood of CM points. We deduce and prove two stable and efficient p-adic analytic methods for computing singular values of modular functions. On the way we prove a non trivial lower bound for the density of smooth numbers in imaginary quadratic rings and show that the canonical lift of an elliptic curve over \( \mathbb{F}_q \) can be computed in probabilistic time ≪ exp((log q)1/2+ε) under GRH. We also extend the notion of canonical lift to supersingular elliptic curves and show how to compute it in that case.

The GRIMM is supported by the French Ministry of Research through Action Concertée Incitative CRYPTOLOGIE, by the Direction Centrale de la Sécurité des Systèmes d’Information and by the Centre Électronique de L’ARmement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.O. Atkin and F. Morain. Elliptic curves and primality proving. Math. Comp., 61:29–68, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Chao, O. Nakamura, and K. Sobataka. Construction of secure elliptic cryptosystems using CM tests a nd liftings. ASIACRYPT’98, 1514:95–109, 1998.

    MathSciNet  Google Scholar 

  3. Jean-François Mestre. Lettre à P. Gaudry et R. Harley, décembre 2000. Private communication.

    Google Scholar 

  4. M. Eichler. The basis problem for modular forms and the traces of the hecke operators. Lecture Notes in Math., 320, 1973.

    Google Scholar 

  5. Alice Gee and Peter Stevenhagen. Generating class fields using Shimura reciprocity. Lecture Notes in Computer Science, 1423:441–453, 1998.

    Google Scholar 

  6. David Kohel. Endomorphism rings of elliptic curves over finite fields. Thesis. University of California at Berkeley, 1996.

    Google Scholar 

  7. J. Lagarias and A. Odlyzko. Effective versions of the Chebotarev density theorem. In A. Fröhlich, editor, Algebraic Number Fields. Academic Press, 1977.

    Google Scholar 

  8. Serge Lang. Elliptic functions, second edition. GTM. Springer, 1987.

    Google Scholar 

  9. H. W. Lenstra and A. Lenstra. Algorithms in number theory. Handbook of Theoretical Computer Science, Algorithms and Complex ity, A:673–718, 1990.

    MathSciNet  Google Scholar 

  10. H. W. Lenstra and C. Pomerance. A rigorous time bound for factoring integers. Journal of the American Mathematical Society, 5(3):483–516, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Lubin, J.-P. Serre, and J. Tate. Elliptic curves and formal groups. Lecture notes prepared in connection with the seminars held at t he Summer Institute on Algebraic Geometry, Whitney Estate, Woods Hole, Massachu setts, July 6-July 31, 1964, http://www.ma.utexas.edu/users/voloch/lst.html:1–8, 1964.

  12. J.-F. Mestre. La méthode des graphes. exemples et applications. Proceedings of the international conference on class numbers and fundamental units of algebraic number fields (Katata, 1986), pages 217–242, 1986.

    Google Scholar 

  13. T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its point counting. J. Ramanujan Math. Soc., 15:247–270, 2000.

    MATH  MathSciNet  Google Scholar 

  14. R. Schoof. Elliptic curves over finite fields and the computation of square roots modulo p. Math. Comp., 44:183–211, 1985.

    MathSciNet  Google Scholar 

  15. R. Schoof. Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de Bordeaux, 7:219–254, 1995.

    MATH  MathSciNet  Google Scholar 

  16. J.-P. Serre. Groupes divisibles (d’après John Tate). Séminaire Bourbaki, 10(318):73–86, 1966.

    Google Scholar 

  17. Thomas R. Shemanske. Ternary quadratic forms and quaternion algebras. Journal of Number Theory, 23:203–209, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Vélu. Isogénies entre courbes elliptiques. Comptes rendus à l’Académie des sciences de Paris, 273, Série A:238–241, 1971.

    MATH  Google Scholar 

  19. William C. Waterhouse. Abelian varieties over finite fields. Ann. scient. Ec. Norm. Sup., 2(4):521–560, 1969.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Couveignes, JM., Henocq, T. (2002). Action of Modular Correspondences around CM Points. In: Fieker, C., Kohel, D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-45455-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43863-2

  • Online ISBN: 978-3-540-45455-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics