Skip to main content

The Influence of Linear Shapes on Solving Interval-Based Configuration Problems

  • Chapter
  • First Online:
Spatial Cognition II

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1849))

Abstract

Spatial configuration problems can be considered as a special kind of inference tasks, and can therefore be investigated within the framework of the well-established mental model theory of human reasoning. Since it is a well-known fact that content and context affects human inference, we are interested to know to what extent abstract properties of linear shape curves conform to previous findings of interval-based reasoning. This investigation is done on a formally grounded basis. The main issue of this paper concerns the question whether the shape of linear curves in general and salient points on the curves in particular have an influence on solving interval-based configuration problems. It has been shown in previous experiments that there are preferred mental models if the linear structure consists of a straight line segment. The reported experiment demonstrates under which conditions arbitrary shaped curves reveal similar and different effects. To distinguish different types of points on a curve a classification of points based on ordering geometry is introduced. It turns out that only those shape features are employed in solving configuration-based problems that can be characterized on the basis of ordering geometry. Curves supplied with salient points also lead to strongly preferred configurations corroborating the notion of preferred mental models. Differences to the obtained types of preferred solutions in comparison to former investigations are discussed and possible explanations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26, 832–843.

    Article  MATH  Google Scholar 

  • Eschenbach, C., Habel, C., Kulik, L., & Leßmöllmann, A. (1998). Shape nouns and shape concepts: A geometry for ‘corner’. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition. An interdisciplinary approach to representing and processing spatial knowledge (pp. 177–201). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Eschenbach, C., Habel, C., & Leßmöllmann, A. (in press). Multiple frames of reference in interpreting complex projective terms. In P. Olivier (Ed.), Spatial language: Cognitive and computational aspects. Dordrecht: Kluwer.

    Google Scholar 

  • Eschenbach, C., & Kulik, L. (1997). An axiomatic approach to the spatial relations underlying ‘left’-‘right’ and ‘in front of’-‘behind’. In G. Brewka, C. Habel, & B. Nebel (Eds.), KI-97: Advances in Artificial Intelligence (pp. 207–218). Berlin: Springer.

    Google Scholar 

  • Gigerenzer, G., & Hug, K. (1992). Domain-specific reasoning: Social contracts, cheating, and perspective change. Cognition, 43, 127–171.

    Article  Google Scholar 

  • Habel, C., & Eschenbach, C. (1997). Abstract structures in spatial cognition. In C. Freksa, M. Jantzen, & R. Valk (Eds.), Foundations of Computer Science. Potential-Theory-Cognition (pp. 369–378). Berlin: Springer.

    Google Scholar 

  • Johnson-Laird, P.N. (1972). The three-term series problem. Cognition, 1, 58–82.

    Article  Google Scholar 

  • Johnson-Laird, P.N. (1983). Mental models. Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Johnson-Laird, P.N., & Byrne, R.M.J. (1991). Deduction. Hove: Lawrence Erlbaum Associates.

    Google Scholar 

  • Johnson-Laird, P.N., Legrenzi, P., & Legrenzi, M. S. (1972). Reasoning and a sense of reality. British Journal of Psychology, 63, 395–400.

    Google Scholar 

  • Knauff, M., Rauh, R., & Schlieder, C. (1995). Preferred mental models in qualitative spatial reasoning: A cognitive assessment of Allen’s calculus. In Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society (pp. 200–205). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Knauff, M., Rauh, R., Schlieder, C., & Strube, G. (1998). Mental models in spatial reasoning. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition. An interdisciplinary approach to representing and processing spatial knowledge (pp. 267–291). Berlin: Springer.

    Google Scholar 

  • Kosslyn, S.M. (1994). Image and brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kuß, T., Rauh, R., & Strube, G. (1996). Präferierte mentale Modelle beim räumlich-relationalen Schließen: Eine Replikations-und Validierungsstudie. In R. H. Kluwe & M. May (Eds.), Proceedings der 2. Fachtagung der Gesellschaft für Kognitionswissenschaft (pp. 81–83). Hamburg: Universität Hamburg.

    Google Scholar 

  • Ligozat, G. (1990). Weak representations of interval algebras. Proceedings of the Eighth National Conference on Artificial Intelligence (Vol. 2, pp. 715–720). Menlo Park, CA: AAAI Press/MIT Press.

    Google Scholar 

  • Logie, R.H. (1995). Visuo-spatial working memory. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Molenaar, M., & De Hoop, S. (Eds.). (1994). Advanced geographic data modelling: Spatial data modelling and query languages for 2D and 3D applications. Delft: Nederlands Geodetic Commission.

    Google Scholar 

  • Nebel, B., & Bürckert, H.J. (1995). Reasoning about temporal relations: A maximal tractable subclass of Allen’s interval algebra. Communication of the ACM, 42, 43–66.

    MATH  Google Scholar 

  • Potts, G.R., & Scholz, K.W. (1975). The internal representation of a three-term series problem. Journal of Verbal Learning and Verbal Behavior, 14, 439–452.

    Article  Google Scholar 

  • Rauh, R. (2000). Strategies of constructing preferred mental models in spatial relational inference. In W. Schaeken, G. De Vooght, A. Vandierendonck, & G. d’Ydewalle (Eds.), Deductive reasoning and strategies (pp. 177–190). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Rauh, R., & Schlieder, C. (1997). Symmetries of model construction in spatial relational inference. In Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society (pp. 638–643). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Schlieder, C. (1999). The construction of preferred mental models in reasoning with interval relations. In G. Rickheit & C. Habel (Eds.), Mental models in discourse processing and reasoning (pp. 333–357). Amsterdam: Elsevier Science Publishers.

    Chapter  Google Scholar 

  • Schlieder, C., & Berendt, B. (1998). Mental model construction in spatial reasoning: A comparison of two computational theories. In U. Schmid, J. F. Krems, & F. Wysotzki (Eds.), Mind modelling: A cognitive science approach to reasoning, learning and discovery (pp. 133–162). Lengerich, Germany: Pabst Science Publishers.

    Google Scholar 

  • Schlieder, C., & Hagen, C. (2000). Interactive layout generation with a diagrammatic constraint language. This volume.

    Google Scholar 

  • Walischewski, H. (1997). Learning and interpretation of the layout of structured documents. In G. Brewka, C. Habel, & B. Nebel (Eds.), KI-97: Advances in Artificial Intelligence (pp. 409–412). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Wason, P.C. (1966). Reasoning. In M. B. Foss (Ed.), New horizons in psychology. Harmond-sworth: Penguin Books.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rauh, R., Kulik, L. (2000). The Influence of Linear Shapes on Solving Interval-Based Configuration Problems. In: Freksa, C., Habel, C., Brauer, W., Wender, K.F. (eds) Spatial Cognition II. Lecture Notes in Computer Science(), vol 1849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45460-8_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-45460-8_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67584-6

  • Online ISBN: 978-3-540-45460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics