Skip to main content

Multigrid Convergence of Geometric Features

  • Chapter
  • First Online:
Digital and Image Geometry

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2243))

Abstract Jordan, Peano and others introduced digitizations of sets in the plane and in the 3D space for the purpose of feature measurements. Features measured for digitized sets, such as perimeter, contents etc., should converge (for increasing grid resolution) towards the corresponding features of the given sets before digitization. This type of multigrid convergence is one option for performance evaluation of feature measurement in image analysis with respect to correctness.

The paper reviews work in multigrid convergence in the context of digital image analysis. In 2D, problems of area estimations and lower-order moment estimations do have ”classical” solutions (Gauss, Dirichlet, Landau et al.). Estimates of moments of arbitrary order are converging with speed k(r) = r -15/11. The linearity of convergence is known for three techniques for curve length estimation based on regular grids and polygonal approximations. Piecewise Lagrange interpolants of sampled curves allow faster convergence speed. A first algorithmic solution for convergent length estimation for digital curves in 3D has been suggested quite recently. In 3D, for problems of volume estimations and lower-order moment estimations solutions have been known for about one-hundred years (Minkowski, Scherrer et al.). But the problem of multigrid surface contents measurement is still a challenge, and there is recent progress in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. A. Anderson and C. E. Kim. Representation of digital line segments and their preimages. Computer Vision, Graphics, Image Processing, 30:279–288, 1985.

    Article  Google Scholar 

  2. E. Andres. Discrete circles, rings and spheres. Computers & Graphics, 18:695–706, 1994.

    Article  Google Scholar 

  3. E. Andres, R. Acharya, and C. Sibata. Discrete analytical hyperplanes. Graphical Models and Image Processing, 59:302–309, 1997.

    Article  Google Scholar 

  4. E. Artzy, G. Frieder, and G. T. Herman. The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm. Computer Vision, Graphics, Image Processing, 15:1–24, 1981.

    Article  Google Scholar 

  5. T. Asano, Y. Kawamura, R. Klette, and K. Obokkata. A new approximation scheme for digital objects and curve lengthy estimations. Internat. Conf. IVCNZ’00, 27–29 November, Hamilton (2000) 26–31.

    Google Scholar 

  6. T. Asano, Y. Kawamura, R. Klette, and K. Obokkata. Minimum-Length Polygons in Approximation Sausages. In: Proc. Visual Form 2001, Capri May 2001, LNCS 2059, 103–112, 2001.

    Google Scholar 

  7. J. Bresenham. An incremental algorithm for digital plotting. In ACM Natl. Conf., 1963.

    Google Scholar 

  8. T. Buelow and R. Klette: Rubber band algorithm for estimating the length of digitized space-curves. In: Proc. ICPR, Barcelona, September 2000, IEEE, Vol. III, 551–555.

    Google Scholar 

  9. M. Chleík and F. Sloboda. Approximation of surfaces by minimal surfaces with obstacles. Technical report, Institute of Control Theory and Robotics, Slovak Academy of Sciences, Bratislava, 2000.

    Google Scholar 

  10. L. Dorst and A. W. M. Smeulders. Discrete straight line segments: parameters, primitives and properties. In: R. Melter, P. Bhattacharya, A. Rosenfeld (eds): Ser. Contemp. Maths., Amer. Math. Soc. 119:45–62, 1991.

    Google Scholar 

  11. J. Françon, J.-M. Schramm, and M. Tajine. Recognizing arithmetic straight lines and planes. In Proc. DGCI, LNCS 1176, pages 141–150. Springer, Berlin, 1996.

    Google Scholar 

  12. H. Freeman. Techniques for the digital computer analysis of chain-encoded arbitrary plane curves. In Proc. Natl. Elect. Conf., volume 17, pages 421–432, 1961.

    Google Scholar 

  13. R. M. Haralick and L. G. Shapiro. Computer and Robot Vision, Volume II. Addison-Wesley, Reading, Massachusetts, 1993.

    Google Scholar 

  14. M. Hu. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8 (1962) 179–187.

    Google Scholar 

  15. M. N. Huxley. Exponential sums and lattice points. Proc. London Math. Soc., 60:471–502, 1990.

    Google Scholar 

  16. R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision, McGraw-Hill, New York, 1995.

    Google Scholar 

  17. C. Jordan. Remarques sur les intégrales définies. Journal de Mathématiques (4e série), 8:69–99, 1892.

    Google Scholar 

  18. Y. Kenmochi and R. Klette. Surface area estimation for digitized regular solids. In Proc. Vision Geometry IX, SPIE 4117, pages 100–111, 2000.

    Google Scholar 

  19. R. Klette. Measurement of object surface area. Proc. Computer Assisted Radiology, Tokyo (1998) 147–152.

    Google Scholar 

  20. R. Klette. Cell complexes through time. In Proc. Vision Geometry IX, SPIE 4117, pages 134–145, 2000.

    Google Scholar 

  21. R. Klette and T. Buelow. Critical edges in simple cube-curves. In: Proc. DGCIÕ2000, Uppsala December 2000, LNCS, 467–478.

    Google Scholar 

  22. R. Klette and H.-J. Sun. Digital Planar Segment Based Polyhedrization for Surface Area Estimation. In: Proc. Visual Form 2001, Capri May 2001, LNCS 2059, 356–366, 2001.

    Google Scholar 

  23. R. Klette and B. Yip. The length of digital curves. Machine Graphics & Vision, 9:673–703, 2000 (extended version of: R. Klette, V. V. Kovalevsky, and B. Yip. Length estimation of digital curves. In Proc. Vision Geometry VIII, SPIE 3811, pages 117–129).

    Google Scholar 

  24. R. Klette and J. Žunić. Interactions between number theory and image analysis. In Proc. Vision Geometry IX, SPIE 4117, pages 210–221, 2000.

    Google Scholar 

  25. R. Klette and J. Žunić. Multigrid convergence of calculated features in image analysis. J. Mathematical Imaging Vision, 13:173–191, 2000.

    Article  MATH  Google Scholar 

  26. V. Kovalevsky and S. Fuchs. Theoretical and experimental analysis of the accuracy of perimeter estimates. In W. Förstner and S. Ruwiedel, editors, Robust Computer Vision, pages 218–242. Wichmann, Karlsruhe, 1992.

    Google Scholar 

  27. Z. Kulpa. Area and perimeter measurements of blobs in discrete binary pictures. Computer Graphics Image Processing, 6:434–454, 1977.

    Article  MathSciNet  Google Scholar 

  28. E. Landau. Ausgewählte Abhandlungen zur Gitterpunktlehre. Deutscher Verlag der Wissenschaften, Berlin, 1962.

    MATH  Google Scholar 

  29. H. Minkowski. Geometrie der Zahlen. Teubner, Leipzig, 1910.

    Google Scholar 

  30. L. Noakes, R. Kozera, and R. Klette. Length estimation for curves with different samplings. (in this book).

    Google Scholar 

  31. L. Noakes and R. Kozera. More-or-less uniform sampling and lengths of curves. Submitted.

    Google Scholar 

  32. J.-P. Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’état, Univ. Louis Pasteur, Strasbourg, 1991.

    Google Scholar 

  33. A. Rosenfeld. Digital straight line segments. IEEE Trans. Computers, 23:1264–1269, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  34. W. Scherrer. Ein Satz über Gitter und Volumen. Mathematische Annalen, 86:99–107, 1922.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. A. Schwarz: Sur une définition erronée de l’aire d’une surface courbe, Ges. math. Abhandl. 2 (1890) 309–311.

    Google Scholar 

  36. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, New York, 1982.

    MATH  Google Scholar 

  37. F. Sloboda and B. Zaťko. On polyhedral form for surface representation. Technical report, Institute of Control Theory and Robotics, Slovak Academy of Sciences, Bratislava, 2000.

    Google Scholar 

  38. F. Sloboda, B. Zaťko, and J. Stoer. On approximation of planar one-dimensional continua. In R. Klette, A. Rosenfeld, and F. Sloboda, editors, Advances in Digital and Computational Geometry, pages 113–160. Springer, Singapore, 1998.

    Google Scholar 

  39. B. L. van der Waerden. Geometry and Algebra in Ancient Civilizations. Springer, Berlin, 1983.

    MATH  Google Scholar 

  40. P. Veelaert. Digital planarity of rectangular surface segments. IEEE Trans. PAMI, 16:647–652, 1994.

    Google Scholar 

  41. K. Voss. Digitalisierungseffekte in der automatischen Bildverarbeitung. EIK, 11:469–477, 1975.

    Google Scholar 

  42. K. Voss and H. Süsse. Adaptive Modelle und Invarianten für zweidimensionale Bilder, Shaker, Aachen, 1995.

    Google Scholar 

  43. A. M. Vossepoel and A. W. M. Smeulders. Vector code probability and metrication error in the representation of straight lines of finite length. Computer Graphics Image Processing, 20:347–364, 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klette, R. (2001). Multigrid Convergence of Geometric Features. In: Bertrand, G., Imiya, A., Klette, R. (eds) Digital and Image Geometry. Lecture Notes in Computer Science, vol 2243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45576-0_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-45576-0_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43079-7

  • Online ISBN: 978-3-540-45576-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics