Skip to main content

Detecting Functionally Coherent Networks in fMRI Data of the Human Brain Using Replicator Dynamics

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2082))

Abstract

We present a new approach to detecting functional networks in fMRI time series data. Functional networks as defined here are characterized by a tight coherence criterion where every network member is closely connected to every other member. This definition of a network closely resembles that of a clique in a graph. We propose to use replicator dynamics for detecting such networks. Our approach differs from standard clustering algorithms in that the entities that are targeted here differ from the traditional cluster concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Hofbauer, K. Sigmund: The Theory of Evolution and Dynamical Systems, Cambridge University Press, 1988.

    Google Scholar 

  2. I.M. Bomze: Evolution towards the Maximum Clique, J. Global Optimization, Vol. 10, 1997, pp. 143–164.

    Article  MATH  MathSciNet  Google Scholar 

  3. O. Sporns, G. Tononi, G.M. Edelman: Theoretical Neuroanatomy: Relating Anatomical and Functional Connectivity in Graphs and Cortical Connection Machines, Cerebral Cortex Vol. 10, Feb. 2000, pp. 127–141.

    Article  Google Scholar 

  4. M. Pellilo, K. Siddiqi, S.W. Zucker: Matching Hierarchical Structures using Association Graphs, IEEE Trans. on Pattern Anal. and Machine Intell. Vol. 21, No. 11, Nov. 1999, pp. 1105–1119.

    Article  Google Scholar 

  5. C. Goutte, P. Toft, E. Rostrup, F. Nielsen. L.K. Hansen: On Clustering fMRI time series, NeuroImage Vol. 9, 1999, pp. 298–310.

    Article  Google Scholar 

  6. M.J. McKeown, M.J, S. Makeig, G.G. Brown, T.P. Jung, S.S. Kindermann, A.J. Bell, T.F. Sejnowski: Analysis of fMRI data by blind separation into independent spatial components, Human Brain Mapping Vol. 6, No. 3, 1998, pp. 160–188.

    Article  Google Scholar 

  7. A. Baume, F.T. Sommer, M. Erb, D. Wildgruber B. Kardatzki, G. Palm, W. Grodd: Dynamical Cluster Analysis of Cortical fMRI Activation, NeuroImage Vol. 9, 1999, pp. 477–489.

    Article  Google Scholar 

  8. T. Hofmann, J.M. Buhmann: Pairwise Data Clustering by Deterministic Annealing, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 1, 1997, pp. 1–14.

    Article  Google Scholar 

  9. R. Baumgartner, C. Windischberger, E. Moser: Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis, Magnetic Resonance Imaging, Vol. 16, No. 2, 1998, pp. 115–125.

    Article  Google Scholar 

  10. J.M. Jolion, P. Meer, S. Bataouche: Robust Clustering with Applications in Computer Vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 8, 1991, pp. 791–802.

    Article  Google Scholar 

  11. J.B. Poline, B.M. Mazoyer: Analysis of individual positron emission tomography activation maps by detection of high signal to noise ratio pixel clusters, Journal of Cerebral Blood Flow and Metabolism, Vol. 13, 1993, pp. 425–437.

    Google Scholar 

  12. R.O. Duda, P.E. Hart: Pattern Classification and Scene Analysis, John Wiley & Sons, 1973.

    Google Scholar 

  13. M. Singh, P. Patel, D. Khosla, T. Kim: Segmentation of Functional MRI by KMeans Clustering, lEEE Trans. on Nuclear Science, Vol. 43, No. 3, 1996, pp. 2030–2036.

    Article  Google Scholar 

  14. P. Schuster, K. Sigmund: Replicator dynamics, Journal of theoretical biology, Vol. 100, 1983, pp. 533–538.

    Article  MathSciNet  Google Scholar 

  15. K.-H. Chuang, M.-J. Chiu, C.C. Lin: Model-free functional MRI analysis using Kohnen Clustering Neural network and fuzzy C-means, IEEE Trans. on Medical Imaging, Vol. 18, No. 12, Dec. 1999, pp. 1117–1128.

    Article  Google Scholar 

  16. J.C. Bezdek, L.O. Hall, L.P. Clarke: Review of MR image segmentation techniques using pattern recognition, Med. Phys. Vol. 20, No. 4, Jul/Aug. 1993, pp.1033–1048.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lohmann, G., von Cramon, D.Y. (2001). Detecting Functionally Coherent Networks in fMRI Data of the Human Brain Using Replicator Dynamics. In: Insana, M.F., Leahy, R.M. (eds) Information Processing in Medical Imaging. IPMI 2001. Lecture Notes in Computer Science, vol 2082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45729-1_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-45729-1_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42245-7

  • Online ISBN: 978-3-540-45729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics