Skip to main content

On the Automatizability of Resolution and Related Propositional Proof Systems

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2471))

Included in the following conference series:

Abstract

We analyse the possibility that a system that simulates Resolution is automatizable. We call this notion ”weak automatizability”. We prove that Resolution is weakly automatizable if and only if Res(2) has feasible interpolation. In order to prove this theorem, we show that Res(2) has polynomial-size proofs of the reflection principle of Resolution (and of any Res(k)), which is a version of consistency. We also show that Resolution proofs of its own reflection principle require slightly subexponential size. This gives a better lower bound for the monotone interpolation of Res(2) and a better separation from Resolution as a byproduct. Finally, the techniques for proving these results give us a new complexity measure for Resolution that refines the width of Ben-Sasson and Wigderson. The new measure and techniques suggest a new algorithm to find Resolution refutations, and a way to obtain a large class of examples that have small Resolution refutations but require relatively large width. This answers a question of Alekhnovich and Razborov related to whether Resolution is automatizable in quasipolynomial-time.

Partially supported by CICYT TIC2001-1577-C03-02, ALCOM-FT IST-99-14186 and HA2000-41.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Alekhnovich and A. A. Razborov. Resolution is not automatizable unless W[P] is tractable. In 42nd Annual IEEE Symposium on Foundations of Computer Science, 2001.

    Google Scholar 

  2. N. Alon and R. B. Boppana. The monotone circuit complexity of boolean functions. Combinatorica, 7:1–22, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Atserias and M. L. Bonet. On the automatizability of resolution and related propositional proof systems. ECCC TR02-010, 2002.

    Google Scholar 

  4. A. Atserias, M. L. Bonet, and J.L. Esteban. Lower bounds for the weak pigeonhole principle and random formulas beyond resolution. Accepted for publication in Information and Computation. A preliminary version appeared in ICALP’01, Lecture Notes in Computer Science 2076, Springer, pages 1005–1016., 2001.

    Google Scholar 

  5. P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In 37th Annual IEEE Symposium on Foundations of Computer Science, pages 274–282, 1996.

    Google Scholar 

  6. E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near-optimal separation of general and tree-like resolution. To appear, 2002.

    Google Scholar 

  7. E. Ben-Sasson and A. Wigderson. Short proofs are narrow-resolution made simple. J. ACM, 48(2):149–169, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Blum, R. M. Karp, O. Vornberger, C. H. Papadimitriou, and M. Yannakakis. The complexity of testing whether a graph is a superconcentrator. Information Processing Letter, 13:164–167, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. L. Bonet, C. Domingo, R. Gavaldà, A. Maciel, and T. Pitassi. Non-automatizability of bounded-depth Frege proofs. In 14th IEEE Conference on Computational Complexity, pages 15–23, 1999. Accepted for publication in the Journal of Computational Complexity.

    Google Scholar 

  10. M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johansen. On the relative complexity of resolution refinements and cutting planes proof systems. SIAM Journal of Computing, 30(5):1462–1484, 2000. A preliminary version appeared in FOCS’98.

    Article  MATH  Google Scholar 

  11. M. L. Bonet and N. Galesi. Optimality of size-width trade-offs for resolution. Journal of Computational Complexity, 2001. To appear. A preliminary version appeared in FOCS’99.

    Google Scholar 

  12. M. L. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with small coefficients. Journal of Symbolic Logic, 62(3):708–728, 1997. A preliminary version appeared in STOC’95.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. L. Bonet, T. Pitassi, and R. Raz. On interpolation and automatization for Frege systems. SIAM Journal of Computing, 29(6):1939–1967, 2000. A preliminary version appeared in FOCS’97.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic, 44:36–50, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  15. S.A. Cook and A. Haken. An exponential lower bound for the size of monotone real circuits. Journal of Computer and System Sciences, 58:326–335, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Dantchev and S. Riis. Tree resolution proofs of the weak pigeon-hole principle. In 16th IEEE Conference on Computational Complexity, pages 69–75, 2001.

    Google Scholar 

  17. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications of the ACM, 5:394–397, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM, 7:201–215, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. L. Esteban, N. Galesi, and J. Messner. Personal communication. Manuscript, 2001.

    Google Scholar 

  20. R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bounds for tree-like cutting planes proofs. In 9th IEEE Symposium on Logic in Computer Science, pages 220–228, 1994.

    Google Scholar 

  21. J. Krajícek. Lower bounds to the size of constant-depth propositional proofs. Journal of Symbolic Logic, 39(1):73–86, 1994.

    Google Scholar 

  22. J. Krajícek. Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. Journal of Symbolic Logic, 62:457–486, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Krajícek. On the weak pigeonhole principle. To appear in Fundamenta Mathematicæ, 2000.

    Google Scholar 

  24. J. Krajícek and P. Pudlák. Some consequences of cryptographical conjectures for S 2 1 and EF. Information and Computation, 140(1):82–94, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Maciel, T. Pitassi, and A.R. Woods. A new proof of the weak pigeonhole principle. In 32nd Annual ACM Symposium on the Theory of Computing, 2000.

    Google Scholar 

  26. P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic, 62(3):981–998, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Pudlák. On the complexity of the propositional calculus. In Sets and Proofs, Invited Papers from Logic Colloquium’ 97, pages 197–218. Cambridge University Press, 1999.

    Google Scholar 

  28. P. Pudlák. On reducibility and symmetry of disjoint NP-pairs. In 26th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, pages 621–632. Springer-Verlag, 2001.

    Google Scholar 

  29. P. Pudlák and J. Sgall. Algebraic models of computation and interpolation for algebraic proof systems. In P. W. Beame and S.R. Buss, editors, Proof Complexity and Feasible Arithmetic, volume 39 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 279–296. American Mathematical Society, 1998.

    Google Scholar 

  30. A. A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of bounded arithmetic. Izvestiya of the RAN, 59(1):205–227, 1995.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atserias, A., Bonet, M.L. (2002). On the Automatizability of Resolution and Related Propositional Proof Systems. In: Bradfield, J. (eds) Computer Science Logic. CSL 2002. Lecture Notes in Computer Science, vol 2471. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45793-3_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-45793-3_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44240-0

  • Online ISBN: 978-3-540-45793-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics