Skip to main content

Balanced Coloring: Equally Easy for All Numbers of Colors?

  • Conference paper
  • First Online:
STACS 2002 (STACS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2285))

Included in the following conference series:

Abstract

We investigate the problem to color the vertex set of a hypergraph H = (X, ε) with a fixed number of colors in a balanced manner, i.e., in such a way that all hyperedges contain roughly the same number of vertices in each color (discrepancy problem). We show the following result:

Suppose that we are able to compute for each induced subhypergraph a coloring in c1 colors having discrepancy at most D. Then there are colorings in arbitrary numbers c2 of colors having discrepancy at most 11/10 c 21 D. A c2-coloring having discrepancy at most 11/10 c 21 D+3c1 -kX∣ can be computed from (c1-1)(c2-1)k colorings in c1 colors having discrepancy at most D with respect to a suitable subhypergraph of H. A central step in the proof is to show that a fairly general rounding problem (linear discrepancy problem in c2 colors) can be solved by computing low-discrepancy c1-colorings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Biedl, E. Cenek, T. M. Chan, E. D. Demaine, M. L. Demaine, R. Fleischer, and Ming-Wei Wang. Balanced k-colorings. In Proceedings of the 25th International Symposium on Mathematical Foundations of Computer Science (MFCS 2000), volume 1893 of Lecture Notes in Computer Science, pages 202–211, Berlin-Heidelberg, 2000. Springer Verlag.

    Google Scholar 

  2. J. Beck and T. Fiala. “Integer making” theorems. Discrete Applied Mathematics, 3:1–8, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Beck and J. Spencer. Integral approximation sequences. Math. Programming, 30:88–98, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Beck and V. T. Sós. Discrepancy theory. In R. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics. 1995.

    Google Scholar 

  5. B. Chazelle. The Discrepancy Method. Princeton University, 2000.

    Google Scholar 

  6. B. Doerr. Discrepancy in different numbers of colors. Discrete Mathematics, 2001. To appear.

    Google Scholar 

  7. B. Doerr. Lattice approximation and linear discrepancy of totally unimodular matrices. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 119–125, 2001. To appear in Combinatorica.

    Google Scholar 

  8. B. Doerr and A. Srivastav. Approximation of multi-color discrepancy. In D. Hochbaum, K. Jansen, J. D. P. Rolim, and A. Sinclair, editors, Randomization, Approximation and Combinatorial Optimization (Proceedings of APPROX-RANDOM 1999), volume 1671 of Lecture Notes in Computer Science, pages 39–50, Berlin-Heidelberg, 1999. Springer Verlag.

    Google Scholar 

  9. B. Doerr and A. Srivastav. Recursive randomized coloring beats fair dice random colorings. In A. Ferreira and H. Reichel, editors, Proceedings of the 18th Annual Symposium on Theoretical Aspects of Computer Science (STACS) 2001, volume 2010 of Lecture Notes in Computer Science, pages 183–194, Berlin-Heidelberg, 2001. Springer Verlag.

    Google Scholar 

  10. A. Ghouila-Houri. Caractérisation des matrices totalement unimodulaires. C. R. Acad. Sci. Paris, 254:1192–1194, 1962.

    MATH  MathSciNet  Google Scholar 

  11. L. Lovász, J. Spencer, and K. Vesztergombi. Discrepancies of set-systems and matrices. Europ. J. Combin., 7:151–160, 1986.

    MATH  Google Scholar 

  12. J. Matousek. Tight upper bound for the discrepancy of half-spaces. Discr. & Comput. Geom., 13:593–601, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Matousek. Geometric Discrepancy. Springer-Verlag, Berlin, 1999.

    Google Scholar 

  14. J. Matoušek, E. Welzl, and L. Wernisch. Discrepancy and approximations for bounded VC-dimension. Combinatorica, 13:455–466, 1984.

    Article  Google Scholar 

  15. J. Spencer. Ten Lectures on the Probabilistic Method. SIAM, 1987.

    Google Scholar 

  16. A. Srinivasan. Improving the discrepancy bound for sparse matrices: better approximations for sparse lattice approximation problems. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans, LA, 1997), pages 692–701, New York, 1997. ACM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doerr, B. (2002). Balanced Coloring: Equally Easy for All Numbers of Colors?. In: Alt, H., Ferreira, A. (eds) STACS 2002. STACS 2002. Lecture Notes in Computer Science, vol 2285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45841-7_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45841-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43283-8

  • Online ISBN: 978-3-540-45841-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics