Skip to main content

Selected Solutions of Einstein’s Field Equations: Their Role in General Relativity and Astrophysics

  • Conference paper
  • First Online:
Einstein’s Field Equations and Their Physical Implications

Part of the book series: Lecture Notes in Physics ((LNP,volume 540))

Abstract

The primary purpose of all physical theory is rooted in reality, and most relativists pretend to be physicists. We may often be members of departments of mathematics and our work oriented towards the mathematical aspects of Einstein’s theory, but even those of us who hold a permanent position on “scri”, are primarily looking there for gravitational waves. Of course, the builder of this theory and its field equations was the physicist. Jürgen Ehlers has always been very much interested in the conceptual and axiomatic foundations of physical theories and their rigorous, mathematically elegant formulation; but he has also developed and emphasized the importance of such areas of relativity as kinetic theory, the mechanics of continuous media, thermodynamics and, more recently, gravitational lensing. Feynman expressed his view on the relation of physics to mathematics as follows [1]:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feynman, R. (1992) The Character of Physical Law, Penguin books edition, with Introduction by Paul Davies; the original edition published in 1965

    Google Scholar 

  2. Hartle, J. B., Hawking, S. W. (1983) Wave function of the Universe, Phys. Rev. D28, 2960. For more recent developments, see Page, D. N. (1991) Minisuperspaces with conformally and minimally coupled scalar fields, J. Math. Phys. 32, 3427, and references therein

    MathSciNet  Google Scholar 

  3. Kuchař, K. V. (1994) private communication based on unpublished calculations. See also Peleg, Y. (1995) The spectrum of quantum dust black holes, Phys. Lett. B356, 462

    Google Scholar 

  4. Chandrasekhar, S. (1987) Ellipsoidal Figures of Equilibrium, Dover paperback edition, Dover Publ., Mineola, N. Y.

    Google Scholar 

  5. Tassoul, J.-L. (1978) Theory of Rotating Stars, Princeton University Press, Princeton, N. J.

    Google Scholar 

  6. Binney, J., Tremaine, S. (1987) Galactic Dynamics, Princeton University Press, Princeton. The idea first appeared in the work of Kuzmin, G. G. (1956) Astr. Zh. 33, 27

    MATH  Google Scholar 

  7. Taniguchi, K. (1999) Irrotational and Incompressible Binary Systems in the First post-Newtonian Approximation of General Relativity, Progr. Theor. Phys. 101, 283. For an extensive review, see Taniguchi, K. (1999) Ellipsoidal Figures of Equilibrium in the First post-Newtonian Approximation of General Relativity, Thesis, Department of Physics, Kyoto University

    Article  ADS  Google Scholar 

  8. Ablowitz, M. J., Clarkson, P. A. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society, Lecture Notes in Mathematics 149, Cambridge University Press, Cambridge

    Google Scholar 

  9. Mason, L. J., Woodhouse, N. M. J. (1996) Integrability, Self-Duality, and Twistor Theory, Clarendon Press, Oxford

    MATH  Google Scholar 

  10. Atiyah, M. (1998) Roger Penrose—A Personal Appreciation, in The Geometric Universe: Science, Geometry, and the work of Roger Penrose, eds. S. A. Hugget, L. J. Mason, K. P. Tod, S. T. Tsou and N. M. J. Woodhouse, Oxford University Press, Oxford

    Google Scholar 

  11. Bičák, J. (1989) Einstein’s Prague articles on gravitation, in Proceedings of the 5th M. Grossmann Meeting on General Relativity, eds. D. G. Blair and M. J. Buckingham, World Scientific, Singapore. A more detailed technical account is given in Bičák, J. (1979) Einstein’s route to the general theory of relativity (in Czech), Čs. čas. fyz. A29, 222

    Google Scholar 

  12. Einstein, A. (1912) Relativity and Gravitation. Reply to a Comment by M. Abraham (in German), Ann. der Physik 38, 1059

    Article  ADS  Google Scholar 

  13. Einstein, A., Grossmann, M. (1913) Outline of a Generalized Theory of Relativity and of a Theory of Gravitation (in German), Teubner, Leipzig; reprinted in Zeits. f. Math. und Physik 62, 225

    Google Scholar 

  14. Einstein, A., Grossmann, M. (1914) Covariance Properties of the Field Equations of the Theory of Gravitation Based on the Generalized Theory of Relativity (in German), Zeits. f. Math. und Physik 63, 215

    ADS  Google Scholar 

  15. Pais, A. (1982) ‘Subtle is the Lord...’—The Science and the Life of Albert Einstein, Clarendon Press, Oxford

    Google Scholar 

  16. Einstein, A. (1915) The Field Equations of Gravitation (in German), König. Preuss. Akad. Wiss. (Berlin) Sitzungsberichte, 844

    Google Scholar 

  17. Corry, L., Renn, J. and Stachel, J. (1997) Belated Decision in the Hilbert-Einstein Priority Dispute, Science 278, 1270

    Article  ADS  MathSciNet  Google Scholar 

  18. Misner, C., Thorne, K. S. and Wheeler, J. A. (1973) Gravitation, W. H. Freeman and Co., San Francisco

    Google Scholar 

  19. Wald, R. M. (1984) General Relativity, The University of Chicago Press, Chicago

    MATH  Google Scholar 

  20. Einstein, A. (1917) Cosmological Considerations in the General Theory of Relativity (in German), König. Preuss. Akad. Wiss. (Berlin) Sitzungsberichte, 142

    Google Scholar 

  21. Prosser, V., Folta, J. eds. (1991) Ernst Mach and the Development of Physics, Charles University—Karolinum, Prague

    Google Scholar 

  22. Barbour, J., Pfister, H. eds. (1995) Mach’s Principle: From Newton’s Bucket to Quantum Gravity, Birkhäuser, Boston-Basel-Berlin

    MATH  Google Scholar 

  23. Lynden-Bell, D., Katz, J. and Bičák J. (1995) Mach’s principle from the relativistic constraint equations, Mon. Not. Roy. Astron. Soc. 272, 150; Errata: Mon. Not. Astron. Soc. 277, 1600

    ADS  Google Scholar 

  24. Hořava, P. (1999) M theory as a holographic field theory, Phys. Rev. D59, 046004

    Google Scholar 

  25. De Sitter, W. (1917) On Einstein’s Theory of Gravitation, and its Astronomical Consequences, Part 3, Mon. Not. Roy. Astron. Soc. 78, 3; see also references therein

    ADS  Google Scholar 

  26. Hawking, S. W., Ellis, G. F. R. (1973) The large scale structure of space-time, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  27. Penrose, R. (1968) Structure of Space-Time, in Batelle Rencontres (1967 Lectures in Mathematics and Physics), eds. C. M. DeWitt and J. A. Wheeler, W. A. Benjamin, New York

    Google Scholar 

  28. Peebles, P. J. E. (1993) Principles of Physical Cosmology, Princeton University Press, Princeton

    Google Scholar 

  29. Bertotti, B., Balbinot, R., Bergia, S. and Messina, A. eds. (1990) Modern Cosmology in Retrospect, Cambridge University Press, Cambridge. See especially the contributions by J. Barbour, J. D. North, G. F. R. Ellis, and W. C. Seitter and H. W. Duerbeck

    Google Scholar 

  30. d’Inverno, R. (1992) Introducing Einstein’s Relativity, Clarendon Press, Oxford

    MATH  Google Scholar 

  31. Geroch, R., Horowitz, G. T. (1979) Global structure of spacetimes, in General Relativity, An Einstein Centenary Survey, eds. S. W. Hawking and W. Israel, Cambridge University Press, Cambridge

    Google Scholar 

  32. Joshi, P. S. (1993) Global Aspects in Gravitation and Cosmology, Oxford University Press, Oxford

    MATH  Google Scholar 

  33. Schmidt, H. J. (1993) On the de Sitter space-time—the geometric foundation of inflationary cosmology, Fortschr. d. Physik 41, 179

    ADS  Google Scholar 

  34. Eriksen, E., Grøn, O. (1995) The de Sitter universe models, Int. J. Mod. Phys. 4, 115

    ADS  Google Scholar 

  35. Bousso, R. (1998) Proliferation of de Sitter space, Phys. Rev. D58, 083511; see also Bousso, R. (1999) Quantum global structure of de Sitter space, Phys. Rev. D60, 063503

    Google Scholar 

  36. Maldacena, J. (1998) The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231

    MATH  ADS  MathSciNet  Google Scholar 

  37. Balasubramanian, V., Kraus, P. and Lawrence, B. (1999) Bulk versus boundary dynamics in anti-de Sitter spacetime, Phys. Rev. D59, 046003

    Google Scholar 

  38. Veneziano, G. (1991) Scale factor duality for classical and quantum string, Phys. Lett. B265, 287; Gasperini, M., Veneziano, G. (1993) Pre-big bang in string cosmology, Astropart. Phys. 1, 317. For the most recent review, in which also some answers to the critism of the pre-big-bang scenario and possible observational tests can be found, see Veneziano, G. (1999) Inflating, warming up, and probing the pre-bangian universe, hep th/9902097

    ADS  MathSciNet  Google Scholar 

  39. Christodoulou, D., Klainerman, S. (1994) The Global Nonlinear Stability of the Minkowski Spacetime, Princeton University Press, Princeton

    Google Scholar 

  40. Bičák, J. (1997) Radiative spacetimes: Exact approaches, in Relativistic Gravitation and Gravitational Radiation (Proceedings of the Les Houches School of Physics), eds. J.-A. Marck and J.-P. Lasota, Cambridge University Press, Cambridge

    Google Scholar 

  41. Friedrich, H. (1986) On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Commun. Math. Phys. 107, 587

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Friedrich, H. (1995) Einstein equations and conformal structure: existence of anti-de Sitter-type space-times, J. Geom. Phys. 17, 125

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Friedrich, H. (1998) Einstein’s Equation and Geometric Asymptotics, in Gravitation and Relativity: At the turn of the Millenium (Proceedings of the GR-15 conference), eds. N. Dadhich and J. Narlikar, Inter-University Centre for Astronomy and Astrophysics Press, Pune

    Google Scholar 

  44. Møller, C. (1972) The theory of Relativity, Second Edition, Clarendon Press, Oxford

    Google Scholar 

  45. Synge, J. L. (1960) Relativity: The General Theory, North-Holland, Amsterdam

    MATH  Google Scholar 

  46. Ehlers, J., Pirani, F. A. E. and Schild, A. (1972) The geometry of free-fall and light propagation, in General Relativity, Papers in Honor of J. L. Synge, ed. L. O. O’Raifeartaigh, Oxford University Press, London

    Google Scholar 

  47. Majer, U., Schmidt, H.-J. eds. (1994) Semantical Aspects of Spacetime Theories, BI-Wissenschaftsverlag, Mannheim, Leipzig, Wien

    Google Scholar 

  48. Misner, C. (1969) Gravitational Collapse, in Brandeis Summer Institute 1968, Astrophysics and General Relativity, eds. M. S. Chrétien, S. Deser and J. Goldstein, Gordon and Breach, New York

    Google Scholar 

  49. Hájček, P. (1999) Choice of gauge in quantum gravity, in Proc. of the 19th Texas symposium on relativistic astrophysics, Paris 1998, to be published; gr-qc/9903089

    Google Scholar 

  50. Ehlers, J. (1981) Christoffel’s Work on the Equivalence Problem for Riemannian Spaces and Its Importance for Modern Field Theories of Physics, in E. B. Christoffel: The Influence of His Work on Mathematics and the Physical Sciences, eds. P. L. Butzer, F. Fehér, Birkhäuser Verlag, Basel

    Google Scholar 

  51. Karlhede, A. (1980) A review of the geometrical equivalence of metrics in general relativity, Gen. Rel. Grav. 12, 693

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Paiva, F. M., Rebouças, M. J. and MacCallum, M. A. H. (1993) On limits of spacetimes—a coordinate-free approach, Class. Quantum Grav. 10, 1165

    Article  MATH  ADS  Google Scholar 

  53. Ehlers, J., Kundt, K. (1962) Exact Solutions of the Gravitational Field Equations, in Gravitation: an introduction to current research, ed. L. Witten, J. Wiley&Sons, New York

    Google Scholar 

  54. Ehlers, J. (1957) Konstruktionen und Charakterisierungen von Lösungen der Einsteinschen Gravitationsfeldgleichungen, Dissertation, Hamburg

    Google Scholar 

  55. Ehlers, J. (1962) Transformations of static exterior solutions of Einstein’s gravitational field equations into different solutions by means of conformal mappings, in Les Théories Relativistes de la Gravitation, eds. M. A. Lichnerowicz, M. A. Tonnelat, CNRS, Paris

    Google Scholar 

  56. Ehlers, J. (1965) Exact solutions, in International Conference on Relativistic Theories of Gravitation, Vol. II, London (mimeographed)

    Google Scholar 

  57. Jordan, P., Ehlers, J. and Kundt, W. (1960) Strenge Lösungen der Feldgleichungen der Allgemeinen Relativitätstheorie, Akad. Wiss. Lit. Mainz, Abh. Math. Naturwiss. Kl., Nr. 2

    Google Scholar 

  58. Jordan, P., Ehlers, J. and Sachs, R. K. (1961) Beiträge zur Theorie der reinen Gravitationsstrahlung, Akad. Wiss. Lit. Mainz, Abh. Math. Naturwiss. Kl., Nr. 1

    Google Scholar 

  59. Chandrasekhar, S. (1986) The Aesthetic Base of the General Theory of Relativity. The Karl Schwarzschild lecture, reprinted in Chandrasekhar, S. (1989) Truth and Beauty, Aesthetics and Motivations in Science, The University of Chicago Press, Chicago

    Google Scholar 

  60. Chandrasekhar, S. (1975) Shakespeare, Newton, and Beethoven or Patterns of Creativity. The Nora and Edward Ryerson Lecture, reprinted in Chandrasekhar, S. (1989) Truth and Beauty, Aesthetics and Motivations in Science, The University of Chicago Press, Chicago

    Google Scholar 

  61. Kramer, D., Stephani, H., Herlt, E. and MacCallum, M. A. H. (1980) Exact solutions of Einstein’s field equations, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  62. Penrose, R. (1999) private communication; see the paper which will appear in special issue of Class. Quantum Gravity celebrating the anniversary of the Institute of Physics

    Google Scholar 

  63. Einstein, A. (1950) Physics and Reality, in Out of My Later Years, Philosophical Library, New York. Originally published in the Journal of the Franklin Institute 221, No. 3; March, 1936

    Google Scholar 

  64. Bonnor, W. B. (1992) Physical Interpretation of Vacuum Solutions of Einstein’s Equations. Part I. Time-independent solutions, Gen. Rel. Grav. 24, 551

    Article  ADS  MathSciNet  Google Scholar 

  65. Bonnor, W. B., Griffiths, J. B. and MacCallum, M. A. H. (1994) Physical Interpretation of Vacuum Solutions of Einstein’s Equations. Part II. Timedependent solutions, Gen. Rel. Grav. 26, 687

    Article  MATH  ADS  MathSciNet  Google Scholar 

  66. Bondi, H., van der Burg, M. G. J. and Metzner, A. W. K. (1962) Gravitational Waves in General Relativity. VII. Waves from Axi-symmetric Isolated Systems, Proc. Roy. Soc. Lond. A 269, 21

    MATH  Google Scholar 

  67. Ehlers, J. (1973) Survey of General Relativity Theory, in Relativity, Astrophysics and Cosmology, ed. W. Israel, D. Reidel, Dordrecht

    Google Scholar 

  68. Künzle, H. P. (1967) Construction of singularity-free spherically symmetric space-time manifolds, Proc. Roy. Soc. Lond. A297, 244

    Google Scholar 

  69. Schmidt, B. G. (1967) Isometry groups with surface-orthogonal trajectories, Zeits. f. Naturfor. 22a, 1351

    ADS  Google Scholar 

  70. Israel, W. (1987) Dark stars: the evolution of an idea, in 300 years of gravitation, eds. S. W. Hawking and W. Israel, Cambridge University Press, Cambridge

    Google Scholar 

  71. Ciufolini, I., Wheeler, J. A. (1995) Gravitation and Inertia, Princeton University Press, Princeton

    MATH  Google Scholar 

  72. Will, C. M. (1996) The Confrontation between General Relativity and Experiment: A 1995 Update, in General Relativity (Proceedings of the 46th Scottish Universities Summer School in Physics), eds. G. S. Hall and J. R. Pulham, Institute of Physics Publ., Bristol

    Google Scholar 

  73. Schneider, P., Ehlers, J. and Falco, E. E. (1992) Gravitational Lenses, Springer-Verlag, Berlin

    Book  Google Scholar 

  74. Hawking, S. W. (1973) The Event Horizon, in Black Holes (Les Houches 1972), eds. C. DeWitt and B. S. DeWitt, Gordon and Breach, New York-London-Paris

    Google Scholar 

  75. Thorne, K. S., Price, R. H. and MacDonald, D. A. (1986) Black Holes: The Membrane Paradigm, Yale University Press, New Haven

    Google Scholar 

  76. Frolov, V., Novikov, I. (1998) Physics of Black Holes, Kluwer, Dordrecht

    Google Scholar 

  77. Clarke, C. J. S. (1993) The Analysis of Space-Time Singularieties, Cambridge University Press, Cambridge

    Google Scholar 

  78. Boyer, R. H. (1969) Geodesic Killing orbits and bifurcate Killing horizons, Proc. Roy. Soc. (London) A311, 245

    MathSciNet  Google Scholar 

  79. Carter, B. (1972) Black Hole Equilibrium States, in Black Holes (Les Houches 1972), eds. C. De Witt and B. S. De Witt, Gordon and Breach, New York-London-Paris

    Google Scholar 

  80. Chruściel, P. T. (1996) Uniqueness of stationary, electro-vacuum black holes revisited, Helv. Phys. Acta 69, 529

    MATH  ADS  MathSciNet  Google Scholar 

  81. Heusler, M. (1996) Black Hole Uniqueness Theorems, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  82. Wald, R. M. (1994) Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, The University of Chicago Press, Chicago

    MATH  Google Scholar 

  83. Rácz, I., Wald R. M. (1996) Global extensions of spacetimes describing asymptotic final states of black holes, Class. Quantum Grav. 13, 539

    Article  MATH  ADS  Google Scholar 

  84. Penrose, R. (1980) On Schwarzschild Causality—A Problem for “Lorentz Covariant” General Relativity, in Essays in General Relativity, eds. F. J. Tipler, Academic Press, New York

    Google Scholar 

  85. Weinberg, S., Gravitation and Cosmology (1972) J. Wiley, New York (see in particular Ch. 6, part 9)

    Google Scholar 

  86. Zel’dovich, Ya. B., Grishchuk, L. P. (1988) The general theory of relativity is correct!, Sov. Phys. Usp. 31, 666. This very pedagogical paper contains a number of references on the field-theoretical approach to gravity

    Article  MathSciNet  ADS  Google Scholar 

  87. Ehlers, J. (1998) General Relativity as Tool for Astrophysics, in Relativistic Astrophysics, eds. H. Riffert et al., Vieweg, Braunschweig/Wiesbaden

    Google Scholar 

  88. Rees, M. (1998) Astrophysical Evidence for Black Holes, in Black Holes and Relativistic Stars, ed. R. M. Wald, The University of Chicago Press, Chicago

    Google Scholar 

  89. Menou, K., Quataert, E. and Narayan, R. (1998) Astrophysical Evidence for Black Hole Event Horizons, in Gravitation and Relativity: At the turn of the Millennium (Proceedings of the GR-15 Conference), eds. N. Dadhich and J. Narlikar, Inter-University Centre for Astronomy and Astrophysics Press, Pune; also astro-ph/9712015

    Google Scholar 

  90. Carr, B. J. (1996) Black Holes in Cosmology and Astrophysics, in General Relativity (Proceedings of the 46th Scottish Universities Summer School in Physics), eds. G. S. Hall and J. R. Pulham, Institute of Physics Publishing, London

    Google Scholar 

  91. Chandrasekhar, S. (1984) The Mathematical Theory of Black Holes, Clarendon Press, Oxford

    Google Scholar 

  92. Abramowicz, M. A. (1993) Inertial forces in general relativity, in The Renaissance of General Relativity and Cosmology, eds. G. Ellis, A. Lanza and J. Miller, Cambridge University Press, Cambridge

    Google Scholar 

  93. Semerák, O. (1998) Rotospheres in Stationary Axisymmetric Spacetimes, Ann. Phys. (N.Y.) 263, 133; see also 69 references quoted therein

    Article  MATH  ADS  Google Scholar 

  94. Feynman, R. P., Morinigo, F. B., Wagner W. G. (1995) Feynman lectures on gravitation, Addison-Wesley Publ. Co., Reading, Mass.

    Google Scholar 

  95. Shapiro, S. L., Teukolsky, S. A. (1983) Black Holes, White Dwarfs, and Neutron Stars, J. Wiley, New York

    Google Scholar 

  96. Frank, J., King, A. and Raine, D. (1992) Accretion Power in Astrophysics, 2nd edition, Cambridge University Press, Cambridge

    Google Scholar 

  97. Thorne, K. S. (1998) Probing Black Holes and Relativistic Stars with Gravitational Waves, in Black Holes and Relativistic Stars, ed. R. M. Wald, The University of Chicago Press, Chicago. See also lectures by E. Seidel, J. Pullin, and E. Flanagan, in Gravitation and Relativity: At the turn of the Millennium (Proceedings of the GR-15 Conference), eds. N. Dadhich and J. Narlikar, Inter-University Centre for Astronomy and Astrophysics Press, Pune

    Google Scholar 

  98. Pullin, J. (1998) Colliding Black Holes: Analytic Insights, in Gravitation and Relativity: At the turn of the Millennium (Proceedings of the GR-15 Conference), eds. N. Dadhich and J. Narlikar, Inter-University Centre for Astronomy and Astrophysics Press, Pune

    Google Scholar 

  99. Graves, J. C., Brill, D. R. (1960) Oscillatory character of Reissner-Nordström metric for an ideal charged wormhole, Phys. Rev. 120, 1507

    Article  MATH  ADS  MathSciNet  Google Scholar 

  100. Boulware, D. G. (1973) Naked Singularities, Thin Shells, and the Reissner-Nordström Metric, Phys. Rev. D8, 2363

    ADS  MathSciNet  Google Scholar 

  101. Zel’dovich, Ya. B., Novikov, I. D. (1971) Relativistic Astrophysics, Volume 1: Stars and Relativity, The University of Chicago Press, Chicago

    Google Scholar 

  102. Penrose, R. (1979) Singularities and time-asymmetry, in General Relativity, An Einstein Centenary Survey, eds. S. W. Hawking and W. Israel, Cambridge University Press, Cambridge

    Google Scholar 

  103. Burko, L., Ori, A. (1997) Introduction to the internal structure of black holes, in Internal Structure of Black Holes and Spacetime Singularities, eds. L. Burko and A. Ori, Inst. Phys. Publ., Bristol, and The Israel Physical Society, Jerusalem

    Google Scholar 

  104. Bičák, J., Dvořák, L. (1980) Stationary electromagnetic fields around black holes III. General solutions and the fields of current loops near the Reissner-Nordström black hole, Phys. Rev. D22, 2933

    ADS  Google Scholar 

  105. Moncrief, V. (1975) Gauge-invariant perturbations of Reissner-Nordström black holes, Phys. Rev. D12, 1526; see also references therein

    ADS  Google Scholar 

  106. Bičák, J. (1979) On the theories of the interacting perturbations of the Reissner-Nordström black hole, Czechosl. J. Phys. B29, 945

    ADS  Google Scholar 

  107. Bičák, J. (1972) Gravitational collapse with charge and small asymmetries, I: Scalar perturbations, Gen. Rel. Grav. 3, 331

    Article  ADS  Google Scholar 

  108. Price, R. H. (1972) Nonspherical perturbations of relativistic gravitational collapse, I: Scalar and gravitational perturbations, Phys. Rev. D5, 2419

    ADS  MathSciNet  Google Scholar 

  109. Price, R. H. (1972) Nonspherical perturbations of relativistic gravitational collapse, II: Integer-spin, zero-rest-mass fields, Phys. Rev. D5, 2439

    Google Scholar 

  110. Bičák, J. (1980) Gravitational collapse with charge and small asymmetries, II: Interacting electromagnetic and gravitational perturbations, Gen. Rel. Grav. 12, 195

    Article  ADS  Google Scholar 

  111. Poisson, E., Israel, W. (1990) Internal structure of black holes, Phys. Rev. D41, 1796

    ADS  MathSciNet  Google Scholar 

  112. Bonnor, W. B., Vaidya, P. C. (1970) Spherically Symmetric Radiation of Charge in Einstein-Maxwell Theory, Gen. Rel. Grav. 1, 127

    Article  ADS  MathSciNet  Google Scholar 

  113. Chambers, C. M. (1997) The Cauchy horizon in black hole-de Sitter spacetimes, in Internal Structure of Black Holes and Spacetime Singularities, eds. L. Burko and A. Ori, Inst. Phys. Publ. Bristol, and The Israel Physical Society, Jerusalem

    Google Scholar 

  114. Penrose, R. (1998) The Question of Cosmic Censorship, in Black Holes and Relativistic Stars, ed. R. M. Wald, The University of Chicago Press, Chicago

    Google Scholar 

  115. Brady, P. R., Moss, I. G. and Myers, R. C. (1998) Cosmic Censorship: As Strong As Ever, Phys. Rev. Lett. 80, 3432

    Article  MATH  ADS  MathSciNet  Google Scholar 

  116. Hubený, V. E. (1999) Overcharging a Black Hole and Cosmic Censorship, Phys. Rev. D59, 064013

    Google Scholar 

  117. Bičák, J. (1977) Stationary interacting fields around an extreme Reissner-Nordström black hole, Phys. Lett. 64A, 279. See also the review Bičák, J. (1982), Perturbations of the Reissner-Nordström black hole, in the Proceedings of the Second Marcel Grossmann Meeting on General Relativity, ed. R. Ruffini, North-Holland, Amsterdam, and references therein

    ADS  Google Scholar 

  118. Hájíček, P. (1981) Quantum wormholes (I.) Choice of the classical solution, Nucl. Phys. B185, 254

    Article  ADS  Google Scholar 

  119. Aichelburg, P. C., Güven, R. (1983) Remarks on the linearized superhair, Phys. Rev. D27, 456; and references therein

    ADS  Google Scholar 

  120. Schwarz, J. H., Seiberg, N. (1999) String theory, supersymmetry, unification, and all that, Rev. Mod. Phys. 71, S112

    Article  Google Scholar 

  121. Carlip, S. (1995) The (2+1)-dimensional black hole, Class. Quantum Grav. 12, 2853

    Article  MATH  ADS  MathSciNet  Google Scholar 

  122. Myers, R. C., Perry, M. J. (1986) Black holes in higher dimensional spacetimes, Ann. Phys. (N.Y.) 172, 304

    Article  MATH  ADS  MathSciNet  Google Scholar 

  123. Gibbons, G. W., Horowitz, G. T. and Townsend, P. K. (1995) Higherdimensional resolution of dilatonic black-hole singularities, Class. Quantum Grav. 12, 297

    Article  MATH  ADS  MathSciNet  Google Scholar 

  124. Horowitz, G. T., Teukolsky, S. A. (1999) Black holes, Rev. Mod. Phys. 71, S180

    Article  ADS  Google Scholar 

  125. Wald, R. M. (1998) Black Holes and Thermodynamics, in Black Holes and Relativistic Stars, ed. R. M. Wald, The University of Chicago Press, Chicago

    Google Scholar 

  126. Horowitz, G. T. (1998) Quantum States of Black Holes, in Black Holes and Relativistic Stars, ed. R. M. Wald, the University of Chicago Press, Chicago

    Google Scholar 

  127. Skenderis, K. (1999) Black holes and branes in string theory, hep-th/9901050

    Google Scholar 

  128. Ashtekhar, A., Baez, J., Corichi, A. and Krasnov, K. (1998) Quantum Geometry and Black Hole Entropy, Phys. Rev. Lett. 80, 904

    Article  ADS  MathSciNet  Google Scholar 

  129. Youm, D. (1999) Black holes and solitons in string theory, Physics Reports 316, Nos. 1–3, 1

    Article  ADS  MathSciNet  Google Scholar 

  130. Chamblin, A., Emparan, R. and Gibbons, G. W. (1998) Superconducting pbranes and extremal black holes, Phys. Rev. D58, 084009

    Google Scholar 

  131. Ernst, F. J. (1976) Removal of the nodal singularity of the C-metric, J. Math. Phys. 17, 54; see also Ernst, F. J., Wild, W. J. (1976) Kerr black holes in a magnetic universe, J. Math. Phys. 17, 182

    Article  ADS  MathSciNet  Google Scholar 

  132. Karas, V., Vokrouhlický, D. (1991) On interpretation of the magnetized Kerr-Newman black hole, J. Math. Phys. 32, 714

    Article  MATH  ADS  MathSciNet  Google Scholar 

  133. Kerr, R. P. (1963) Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11, 237

    Article  MATH  ADS  MathSciNet  Google Scholar 

  134. Stewart, J., Walker, M. (1973) Black holes: the outside story, in Springer tracts in modern physics, Vol. 69, Springer-Verlag, Berlin

    Google Scholar 

  135. Thorne, K. S. (1980) Multipole expansions of gravitational radiation, Rev. Mod. Phys. 52, 299

    Article  ADS  MathSciNet  Google Scholar 

  136. Hansen, R. O. (1974) Multipole moments of stationary space-times, J. Math. Phys. 15, 46

    Article  MATH  ADS  Google Scholar 

  137. Beig, R., Simon, W. (1981) On the multipole expansion for stationary spacetimes, Proc. Roy. Soc. Lond. A376, 333

    MathSciNet  Google Scholar 

  138. de Felice, F., Clarke, C. J. S. (1990) Relativity on curved manifolds, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  139. Landau, L. D., Lifshitz, E. M. (1962) The Classical Theory of Fields, Pergamon Press, Oxford

    MATH  Google Scholar 

  140. O’Neill, B. (1994) The Geometry of Kerr Black Holes, A. K. Peters, Wellesley

    Google Scholar 

  141. Katz, J., Lynden-Bell, D. and Bičák, J. (1998) Instantaneous inertial frames but retarded electromagnetism in rotating relativistic collapse, Class. Quantum Grav. 15, 3177

    Article  MATH  ADS  Google Scholar 

  142. Semerák, O. (1996) Photon escape cones in the Kerr field, Helv. Phys. Acta 69, 69

    MATH  ADS  MathSciNet  Google Scholar 

  143. Bičák, J., Stuchlík, Z. (1976) The fall of the shell of dust onto a rotating black hole, Mon. Not. Roy. Astron. Soc. 175, 381

    ADS  Google Scholar 

  144. Bičák, J., Semerák, O. and Hadrava, P. (1993) Collimation effects of the Kerr field, Mon. Not. Roy. Astron. Soc. 263, 545

    ADS  Google Scholar 

  145. Newman, E. T., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence, R. (1965) Metric of a rotating charged mass, J. Math. Phys. 6, 918

    Article  ADS  MathSciNet  Google Scholar 

  146. Garfinkle, D., Traschen, J. (1990) Gyromagnetic ratio of a black hole, Phys. Rev. D42, 419

    ADS  Google Scholar 

  147. Bardeen, J. M. (1973) Timelike and Null Geodesics in the Kerr Metric, in Black Holes, eds. C. DeWitt and B. S. DeWitt, Gordon and Breach, New York

    Google Scholar 

  148. Rindler, W. (1997) The case against space dragging, Phys. Lett. A233, 25

    ADS  MathSciNet  Google Scholar 

  149. Jantzen, R. T., Carini, P. and Bini, D. (1992) The Many Faces of Gravitoelectromagnetism, Ann. Phys. (N.Y.) 215, 1; see also the review (1999) The Inertial Forces / Test Particle Motion Game, in the Proceedings of the 8th M. Grossmann Meeting on General Relativity, ed. T. Piran, World Scientific, Singapore

    Article  ADS  MathSciNet  Google Scholar 

  150. Karas, V., Vokrouhlický, D. (1994) Relativistic precession of the orbit of a star near a supermassive rotating black hole, Astrophys. J. 422, 208

    Article  ADS  Google Scholar 

  151. Blandford, R. D., Znajek, R. L. (1977) Electromagnetic extraction of energy from Kerr black holes, Mon. Not. Roy. Astron. Soc. 179,433. See also Blandford, R. (1987) Astrophysical black holes, in 300 years of gravitation, eds. S. W. Hawking and W. Israel, Cambridge University Press, Cambridge

    ADS  Google Scholar 

  152. Bičák, J., Janiš, V. (1985) Magnetic fluxes across black holes, Mon. Not. Roy. Astron. Soc. 212, 899

    ADS  Google Scholar 

  153. Punsly, B., Coroniti, F. V. (1990) Relativistic winds from pulsar and black hole magnetospheres, Astrophys. J. 350, 518. See also Punsly, B. (1998) Highenergy gamma-ray emission from galactic Kerr-Newman black holes. The central engine, Astrophys. J. 498, 640, and references therein

    Article  ADS  Google Scholar 

  154. Abramowicz, M. (1998) private communication

    Google Scholar 

  155. Mirabel, I. F., Rodríguez, L. F. (1998) Microquasars in our Galaxy, Nature 392, 673

    Article  ADS  Google Scholar 

  156. Futterman, J. A. H., Handler, F. A. and Matzner, R. A. (1988) Scattering from black holes, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  157. Bičák, J., Dvořák, L. (1976) Stationary electromagnetic fields around black holes II. General solutions and the fields of some special sources near a Kerr black hole, Gen. Rel. Grav. 7, 959

    Article  ADS  Google Scholar 

  158. Sasaki, M., Nakamura, T. (1990) Gravitational Radiation from an Extreme Kerr Black Hole, Gen. Rel. Grav. 22, 1551; and references therein

    Article  MathSciNet  Google Scholar 

  159. Krivan, W., Price, R. H. (1999) Formation of a rotating Black Hole from a Close-Limit Head-On Collision, Phys. Rev. Lett. 82, 1358

    Article  MATH  ADS  MathSciNet  Google Scholar 

  160. Campanelli, M., Lousto, C. O. (1999) Second order gauge invariant gravitational perturbations of a Kerr black hole, Phys. Rev. D59, 124022

    ADS  MathSciNet  Google Scholar 

  161. Fabian, A. C. (1999) Emission lines: signatures of relativistic rotation, in Theory of Accretion Disks, eds. M. Abramowicz, G. Björnson, J. Pringle, Cambridge University Press, Cambridge

    Google Scholar 

  162. Ipser, J. R. (1998) Low-Frequency Oscillations of Relativistic Accretion Disks, in Relativistic Astrophysics, eds. [edH. Riffert et al.}, Vieweg, Braunschweig, Wiesbaden

    Google Scholar 

  163. Bičák, J., Podolský, J. (1997) The global structure of Robinson-Trautman radiative space-times with cosmological constant, Phys. Rev. D55, 1985

    ADS  Google Scholar 

  164. Hartle, J. B., Hawking, S. W. (1972) Solutions of the Einstein-Maxwell equations with many black holes, Commun. Math. Phys. 26, 87

    Article  ADS  MathSciNet  Google Scholar 

  165. Heusler, M. (1997) On the Uniqueness of the Papapetrou-Majumdar metric, Class. Quantum Grav. 14, L129

    Article  ADS  MathSciNet  Google Scholar 

  166. Chruściel, P. T. (1999) Towards the classification of static electro-vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior, Class. Quantum Grav. 16, 689. See also Chruściel’s very general result for the vacuum case in the preceding paper: The classification of static vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior, Class. Quantum Grav. 16, 661

    Article  ADS  MATH  Google Scholar 

  167. Kramer, D., Neugebauer, G. (1984) Bäcklund Transformations in General Relativity, in Solutions of Einstein’s Equations: Techniques and Results, eds. C. Hoenselaers and W. Dietz, Lecture Notes in Physics 205, Springer-Verlag, Berlin

    Chapter  Google Scholar 

  168. Bičák, J., Hoenselaers, C. (1985) Two equal Kerr-Newman sources in stationary equilibrium, Phys. Rev. D31, 2476

    ADS  Google Scholar 

  169. Weinstein, G. (1996) N-black hole stationary and axially symmetric solutions of the Einstein/Maxwell equations, Comm. Part. Di.. Eqs. 21, 1389

    Article  MATH  Google Scholar 

  170. Dietz, W., Hoenselaers, C. (1982) Stationary System of Two Masses Kept Apart by Their Gravitational Spin-Spin Interaction, Phys. Rev. Lett. 48, 778; see also Dietz, W. (1984) HKX-Transformations: Some Results, in Solutions of Einstein’s Equations: Techniques and Results, eds. C. Hoenselaers and W. Dietz, Lecture Notes in Physics 205, Springer-Verlag, Berlin

    Article  ADS  MathSciNet  Google Scholar 

  171. Kastor, D., Traschen, J. (1993) Cosmological multi-black-hole solutions, Phys. Rev. D47, 5370

    ADS  MathSciNet  Google Scholar 

  172. Brill, D. R., Horowitz, G. T., Kastor, D. and Traschen, J. (1994) Testing cosmic censorship with black hole collisions, Phys. Rev. D49, 840

    ADS  MathSciNet  Google Scholar 

  173. Welch, D. L. (1995) Smoothness of the horizons of multi-black-hole solutions, Phys. Rev. D52, 985

    ADS  MathSciNet  Google Scholar 

  174. Brill, D. R., Hayward, S. A. (1994) Global structure of a black hole cosmos and its extremes, Class. Quantum Grav. 11, 359

    Article  MATH  ADS  MathSciNet  Google Scholar 

  175. Ida, D., Nakao, K., Siino, M. and Hayward, S. A. (1998) Hoop conjecture for colliding black holes, Phys. Rev. D58, 121501

    ADS  MathSciNet  Google Scholar 

  176. Scott, S. M., Szekeres, P. (1986) The Curzon singularity I: spatial section, Gen. Rel. Grav. 18, 557; The Curzon singularity II: global picture, Gen. Rel. Grav. 18, 571

    Article  MATH  ADS  MathSciNet  Google Scholar 

  177. Bičák, J., Lynden-Bell, D. and Katz, J. (1993) Relativistic disks as sources of static vacuum spacetimes, Phys. Rev. D47, 4334

    ADS  Google Scholar 

  178. Bičák, J., Lynden-Bell, D. and Pichon, C. (1993) Relativistic discs and flat galaxy models, Mon. Not. Roy. Astron. Soc. 265, 26

    Google Scholar 

  179. Evans, N. W., de Zeeuw, P. T. (1992) Potential-density pairs for flat galaxies, Mon. Not. Roy. Astron. Soc. 257, 152

    ADS  Google Scholar 

  180. Chruściel, P., MacCallum, M. A. H. and Singleton, P. B. (1995) Gravitational waves in general relativity XIV. Bondi expansions and the ‘polyhomogeneity’ of J, Phil. Trans. Roy. Soc. Lond. A350, 113

    Article  ADS  Google Scholar 

  181. Semerák, O., Zellerin, T. and Žáček, M. (1999) The structure of superposed Weyl fields, Mon. Not. Roy. Astron. Soc., 308, 691 and 705

    Article  ADS  Google Scholar 

  182. Lemos, J. P. S., Letelier, P. S. (1994) Exact general relativistic thin disks around black holes, Phys. Rev. D49, 5135

    ADS  Google Scholar 

  183. González, G. A., Letelier, P. S. (1999) Relativistic Static Thin Disks with Radial Stress Support, Class. Quantum Grav. 16, 479

    Article  MATH  ADS  Google Scholar 

  184. Letelier, P. S. (1999) Exact General Relativistic Disks with Magnetic Fields, gr-qc/9907050

    Google Scholar 

  185. Krasiński, A. (1978) Sources of the Kerr metric, Ann. Phys. (N.Y.) 112, 22

    Article  ADS  MATH  Google Scholar 

  186. McManus, D. (1991) A toroidal source for the Kerr black hole geometry, Class. Quantum Grav. 8, 863

    Article  ADS  MathSciNet  Google Scholar 

  187. Bardeen, J. M., Wagoner, R. V. (1971) Relativistic disks. I. Uniform rotation, Astrophys. J. 167, 359

    Article  ADS  MathSciNet  Google Scholar 

  188. Bičák, J., Ledvinka, T. (1993) Relativistic Disks as Sources of the Kerr Metric, Phys. Rev. Lett. 71, 1669. See also (1993) Sources for stationary axisymmetric gravitational fields, Max-Planck-Institute for Astrophysics, Green report MPA 726, Munich

    Article  ADS  MATH  MathSciNet  Google Scholar 

  189. Pichon, C., Lynden-Bell, D. (1996) New sources for Kerr and other metrics: rotating relativistic discs with pressure support, Mon. Not. Roy. Astron. Soc. 280, 1007

    ADS  Google Scholar 

  190. Barrabés, C., Israel, W. (1991) Thin shells in general relativity and cosmology: the lightlike limit, Phys. Rev. D43, 1129

    ADS  Google Scholar 

  191. Ledvinka, T., Bičák, J. and Žofka, M. (1999) Relativistic disks as sources of Kerr-Newman fields, in Proc. 8th M. Grossmann Meeting on General Relativity, ed. T. Piran, World Sci., Singapore

    Google Scholar 

  192. Neugebauer, G., Meinel, R. (1995) General Relativistic Gravitational Fields of a Rigidly Rotating Disk of Dust: Solution in Terms of Ultraelliptic Functions, Phys. Rev. Lett. 75, 3046

    Article  MATH  ADS  MathSciNet  Google Scholar 

  193. Neugebauer, G., Kleinwächter, A. and Meinel, R. (1996) Relativistically rotating dust, Helv. Phys. Acta 69, 472

    MATH  ADS  Google Scholar 

  194. Meinel, R. (1998) The rigidly rotating disk of dust and its black hole limit, in Proc. of the Second Mexican School on Gravitation and Mathematical Physics, eds. A. Garcia et al., Science Network Publishing, Konstanz, gr-qc/9703077

    Google Scholar 

  195. Breitenlohner, P., Forgács, P. and Maison, D. (1995) Gravitating Monopole Solutions II, Nucl. Phys. 442B, 126

    ADS  Google Scholar 

  196. Misner, Ch. (1967) Taub-NUT Space as a Counterexample to Almost Anything, in Relativity Theory and Astrophysics 1, Lectures in Applied Mathematics, Vol. 8, ed. J. Ehlers, American Math. Society, Providence, R. I.

    Google Scholar 

  197. Taub, A. H. (1951) Empty space-times admitting a three parameter group of motions, Ann. Math. 53, 472

    Article  ADS  MathSciNet  Google Scholar 

  198. Newman, E., Tamburino, L. and Unti, T. (1963) Empty-space generalization of the Schwarzschild metric, J. Math. Phys. 4, 915

    Article  MATH  ADS  MathSciNet  Google Scholar 

  199. Lynden-Bell, D., Nouri-Zonoz, M. (1998) Classical monopoles: Newton, NUT space, gravomagnetic lensing, and atomic spectra, Rev. Mod. Phys. 70, 427

    Article  ADS  MathSciNet  Google Scholar 

  200. Geroch, R. (1971) A method for generating solutions of Einsteinr’s equations, J. Math. Phys. 12, 918 and J. Math. Phys. 13, 394

    Article  MATH  ADS  MathSciNet  Google Scholar 

  201. Ehlers, J. (1997) Examples of Newtonian limits of relativistic spacetimes, Class. Quantum Grav. 14, A119

    Article  MATH  ADS  MathSciNet  Google Scholar 

  202. Wheeler, J. A. (1980) The Beam and Stay of the Taub Universe, in Essays in General Relativity, eds. F. J. Tipler, Academic Press, New York

    Google Scholar 

  203. Hájíček, P. (1971) Extension of the Taub and NUT spaces and extensions of their tangent bundles, Commun. Math. Phys. 17, 109; Bifurcate spacetimes, J. Math. Phys. 12, 157; Causality in non-Hausdor. spacetimes, Commun. Math. Phys. 21, 75

    Article  Google Scholar 

  204. Thorne, K. S. (1993) Misner Space as a Prototype for Almost Any Pathology, in Directions in General Relativity, Vol. 1, eds. B. L. Hu, M. P. Ryan and C. V. Vishveshwara, Cambridge University Press, Cambridge

    Google Scholar 

  205. Gibbons, G. W., Manton, N. S. (1986) Classical and Quantum Dynamics of BPS monopoles, Nuclear Physics B274, 183

    ADS  MathSciNet  Google Scholar 

  206. Kraan T. C., Baal P. (1998) Exact T-duality between calorons and Taub—NUT spaces, INLO-PUB-4/98, hep-th/9802049

    Google Scholar 

  207. Bičák, J., Podolský, J. (1999) Gravitational waves in vacuum spacetimes with cosmological constant. I. Classification and geometrical properties of nontwisting type N solutions. II. Deviation of geodesics and interpretation of non-twisting type N solutions, J. Math. Phys. 44, 4495 and 4506

    Article  ADS  Google Scholar 

  208. Aichelburg, P. C., Balasin, H. (1996) Symmetries of pp-waves with distributional profile, Class. Quantum Grav. 13, 723

    Article  MATH  ADS  MathSciNet  Google Scholar 

  209. Aichelburg, P. C., Balasin, H. (1997) Generalized symmetries of impulsive gravitational waves, Class. Quantum Grav. 14, A31

    Article  MATH  ADS  MathSciNet  Google Scholar 

  210. Aichelburg, P. C., Sexl, R. U. (1971) On the gravitational field of a massless particle, Gen. Rel. Grav. 2, 303

    Article  ADS  Google Scholar 

  211. Penrose, R. (1972) The geometry of impulsive gravitational waves, in General Relativity, Papers in Honour of J. L. Synge, ed. L. O’Raifeartaigh, Clarendon Press, Oxford

    Google Scholar 

  212. Griffiths, J. B. (1991) Colliding Plane Waves in General Relativity, Clarendon Press, Oxford

    MATH  Google Scholar 

  213. Bondi, H., Pirani, F. A. E. and Robinson, I. (1959) Gravitational waves in general relativity. III. Exact plane waves, Proc. Roy. Soc. Lond. A 251, 519

    MATH  MathSciNet  Google Scholar 

  214. Rindler, W. (1977) Essential Relativity (2nd edition), Springer, New York-Berlin

    MATH  Google Scholar 

  215. Penrose, R. (1965) A remarkable property of plane waves in general relativity, Rev. Mod. Phys. 37, 215

    Article  MATH  ADS  MathSciNet  Google Scholar 

  216. Lousto, C. O., Sánchez, N. (1989) The ultrarelativistic limit of the Kerr-Newman geometry and particle scattering at the Planck scale, Phys. Lett. B232, 462

    ADS  Google Scholar 

  217. Ferrari, V., Pendenza, P. (1990) Boosting the Kerr Metric, Gen. Rel. Grav. 22, 1105

    Article  ADS  MathSciNet  Google Scholar 

  218. Balasin, H., Nachbagauer, H. (1995) The ultrarelativistic Kerr-geometry and its energy-momentum tensor, Class. Quantum Grav. 12, 707

    Article  ADS  MathSciNet  Google Scholar 

  219. Podolský, J., Griffiths, J. B. (1998) Boosted static multipole particles as sources of impulsive gravitational waves, Phys. Rev. D58, 124024

    ADS  Google Scholar 

  220. Hotta, M., Tanaka, M. (1993) Shock-wave geometry with non-vanishing cosmological constant, Class. Quantum Grav. 10, 307

    Article  ADS  MathSciNet  Google Scholar 

  221. Podolský, J., Griffiths, J. B. (1997) Impulsive gravitational waves generated by null particles in de Sitter and anti-de Sitter backgrounds, Phys. Rev. D56, 4756

    ADS  Google Scholar 

  222. D’Eath, P. D. (1996) Black Holes: Gravitational Interactions, Clarendon Press, Oxford

    MATH  Google Scholar 

  223. ’t Hooft, G. (1987) Graviton dominance in ultra-high-energy scattering, Phys. Lett. B198, 61

    ADS  MathSciNet  Google Scholar 

  224. Fabbrichesi, M., Pettorino, R., Veneziano, G. and Vilkovisky, G. A. (1994) Planckian energy scattering and surface terms in the gravitational action, Nucl. Phys. B419, 147

    Article  ADS  Google Scholar 

  225. Kunzinger, M., Steinbauer, R. (1999) A note on the Penrose junction conditions, Class. Quantum Grav. 16, 1255

    Article  MATH  ADS  MathSciNet  Google Scholar 

  226. Kunzinger, M., Steinbauer, R. (1999) A rigorous solution concept for geodesic and geodesic deviation equations in impulsive gravitational waves, J. Math. Phys. 40, 1479

    Article  MATH  ADS  MathSciNet  Google Scholar 

  227. Podolský, J., Veselý, K. (1998) Chaotic motion in pp-wave spacetimes, Class. Quantum Grav. 15, 3505

    Article  MATH  ADS  Google Scholar 

  228. Levin, O., Peres, A. (1994) Quantum field theory with null-fronted metrics, Phys. Rev. D50, 7421

    ADS  MathSciNet  Google Scholar 

  229. Klimčík, C. (1991) Gravitational waves as string vacua I, II, Czechosl. J. Phys. 41, 697 (see also references therein)

    Article  ADS  MATH  Google Scholar 

  230. Gibbons, G. W. (1999) Two loop and all loop finite 4-metrics, Class. Quantum Grav. 16, L 71

    Article  ADS  MathSciNet  Google Scholar 

  231. Bičák, J., Pravda, V. (1998) Curvature invariants in type N spacetimes, Class. Quantum Grav. 15, 1539

    Article  ADS  MATH  Google Scholar 

  232. Pravda, V. (1999) Curvature invariants in type-III spacetimes, Class. Quantum Grav. 16, 3321

    Article  MATH  ADS  MathSciNet  Google Scholar 

  233. Khan, K. A., Penrose, R. (1971) Scattering of two impulsive gravitational plane waves, Nature 229, 185

    Article  ADS  Google Scholar 

  234. Szekeres, P. (1970) Colliding gravitational waves, Nature 228, 1183

    Article  ADS  Google Scholar 

  235. Szekeres, P. (1972) Colliding plane gravitational waves, J. Math. Phys. 13, 286

    Article  ADS  MathSciNet  Google Scholar 

  236. Yurtsever, U. (1988) Structure of the singularities produced by colliding plane waves, Phys. Rev. D38, 1706

    ADS  MathSciNet  Google Scholar 

  237. Hauser, I., Ernst, F. J. (1989) Initial value problem for colliding gravitational waves—I/II, J. Math. Phys. 30, 872 and 2322; (1990) and (1991) Initial value problem for colliding gravitational waves. III/IV, J. Math. Phys. 31, 871 and 32, 198

    Article  MATH  ADS  MathSciNet  Google Scholar 

  238. Hauser, I., Ernst, F. J. (1999) Group structure of the solution manifold of the hyperbolic Ernst equation—general study of the subject and detailed elaboration of mathematical proofs, 216 pages, gr-qc/9903104

    Google Scholar 

  239. Nutku, Y., Halil, M. (1977) Colliding impulsive gravitational waves, Phys. Rev. Lett. 39, 1379

    Article  ADS  Google Scholar 

  240. Matzner, R., Tipler, F. J. (1984) Methaphysics of colliding self-gravitating plane waves, Phys. Rev. D29, 1575

    ADS  MathSciNet  Google Scholar 

  241. Chandrasekhar, S., Ferrari, V. (1984) On the Nutku-Halil solution for colliding impulsive gravitational waves, Proc. Roy. Soc. Lond. A396, 55

    MathSciNet  Google Scholar 

  242. Chandrasekhar, S., Xanthopoulos, B. C. (1986) A new type of singularity created by colliding gravitational waves, Proc. Roy. Soc. Lond. A408, 175

    MathSciNet  Google Scholar 

  243. Chandrasekhar, S., Xanthopoulos, B. C. (1985) On colliding waves in the Einstein-Maxwell theory, Proc. Roy. Soc. Lond. A398, 223

    MathSciNet  Google Scholar 

  244. Bičák, J. (1989) Exact radiative space-times, in Proceedings of the fifth Marcel Grossmann Meeting on General Relativity, eds. D. Blair and M. J. Buckingham, World Scientific, Singapore

    Google Scholar 

  245. Yurtsever, U. (1987) Instability of Killing-Cauchy horizons in plane-symmetric spacetimes, Phys. Rev. D36, 1662

    ADS  MathSciNet  Google Scholar 

  246. Yurtsever, U. (1988) Singularities in the collisions of almost-plane gravitational waves, Phys. Rev. D38, 1731

    ADS  MathSciNet  Google Scholar 

  247. Chandrasekhar, S. (1986) Cylindrical waves in general relativity, Proc. Roy. Soc. Lond. A408, 209

    MathSciNet  Google Scholar 

  248. Einstein, A., Rosen, N. (1937) On Gravitational Waves, J. Franklin Inst. 223, 43

    Article  MATH  ADS  Google Scholar 

  249. Beck, G. (1925) Zur Theorie binärer Gravitationsfelder, Z. Phys. 33, 713

    Article  ADS  Google Scholar 

  250. Stachel, J. (1966) Cylindrical Gravitational News, J. Math. Phys. 7, 1321

    Article  MATH  ADS  MathSciNet  Google Scholar 

  251. d’Inverno, R. (1997) Combining Cauchy and characteristic codes in numerical relativity, in Relativistic Gravitation and Gravitational Radiation (Proceedings of the Les Houches School of Physics), eds. J.-A. Marck and J.-P. Lasota, Cambridge University Press, Cambridge

    Google Scholar 

  252. Piran, T., Safier, P. N. and Katz, J. (1986) Cylindrical gravitational waves with two degrees of freedom: An exact solution, Phys. Rev. D34, 331

    ADS  Google Scholar 

  253. Thorne, K. S. (1965) C-energy, Phys. Rev. B138, 251

    Article  ADS  MathSciNet  Google Scholar 

  254. Garriga, J., Verdaguer, E. (1987) Cosmic strings and Einstein-Rosen waves, Phys. Rev. D36, 2250

    ADS  Google Scholar 

  255. Xanthopoulos, B. C. (1987) Cosmic strings coupled with gravitational and electromagnetic waves, Phys. Rev. D35, 3713

    ADS  MathSciNet  Google Scholar 

  256. Chandrasekhar, S., Ferrari, V. (1987) On the dispersion of cylindrical impulsive gravitational waves, Proc. Roy. Soc. Lond. A412, 75

    MathSciNet  Google Scholar 

  257. Tod, K. P. (1990) Penrose’s quasi-local mass and cylindrically symmetric spacetimes, Class. Quantum Grav. 7, 2237

    Article  MATH  ADS  MathSciNet  Google Scholar 

  258. Berger, B. K., Chruściel, P. T. and Moncrief, V. (1995) On “Asymptotically Flat” Space-Times with G 2-Invariant Cauchy Surfaces, Ann. Phys. (N.Y.) 237, 322

    Article  MATH  ADS  Google Scholar 

  259. Kuchař, K. V. (1971) Canonical quantization of cylindrical gravitational waves, Phys. Rev. D4, 955

    ADS  Google Scholar 

  260. Ashtekar, A., Pierri, M. (1996) Probing quantum gravity through exactly soluble midisuperspaces 1, J. Math. Phys. 37, 6250

    Article  MATH  ADS  MathSciNet  Google Scholar 

  261. Korotkin, D., Samtleben, H. (1998) Canonical Quantization of Cylindrical Gravitational Waves with Two Polarizations, Phys. Rev. Lett. 80, 14

    Article  MATH  ADS  MathSciNet  Google Scholar 

  262. Ashtekar, A., Bičák, J. and Schmidt, B. G. (1997) Asymptotic structure of symmetry-reduced general relativity, Phys. Rev. D55, 669

    ADS  Google Scholar 

  263. Ashtekar, A., Bičák, J. and Schmidt, B. G. (1997) Behaviour of Einstein-Rosen waves at null infinity, Phys. Rev. D55, 687

    ADS  Google Scholar 

  264. Penrose, R. (1963) Asymptotic properties of fields and space-times, Phys. Rev. Lett. 10, 66; (1965) Zero rest-mass fields including gravitation: asymptotic behaviour, Proc. Roy. Soc. Lond. A284, 159

    Article  ADS  MathSciNet  Google Scholar 

  265. Ehlers, J., Friedrich, H. eds. (1994) in Canonical Gravity: From Classical to Quantum, Springer-Verlag, Berlin-Heidelberg

    MATH  Google Scholar 

  266. Ryan, M. (1972) Hamiltonian Cosmology, Springer-Verlag, Berlin

    Google Scholar 

  267. MacCallum, M. A. H. (1975) Quantum Cosmological Models, in Quantum Gravity, eds. C. J. Isham, R. Penrose and D. W. Sciama, Clarendon Press, Oxford

    Google Scholar 

  268. Halliwell, J. J. (1991) Introductory Lectures on Quantum Cosmology, in Quantum Cosmology and Baby Universes, eds. S. Coleman, J. Hartle, T. Piran and S. Weinberg, World Scientific, Singapore

    Google Scholar 

  269. Halliwell, J. J. (1990) A Bibliography of Papers on Quantum Cosmology, Int. J. Mod. Phys. A5, 2473

    ADS  MathSciNet  Google Scholar 

  270. Kuchař, K. V. (1973) Canonical Quantization of Gravity, in Relativity, Astrophysics and Cosmology, ed. W. Israel, Reidel, Dordrecht

    Google Scholar 

  271. Kuchař, K. V. (1992) Time and Interpretations of Quantum Gravity, in Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, eds. G. Kunstatter, D. Vincent and J. Williams, World Scientific, Singapore

    Google Scholar 

  272. Kuchař, K. V. (1994) Geometrodynamics of Schwarzschild black holes, Phys. Rev. D50, 3961

    ADS  Google Scholar 

  273. Romano, J. D., Torre, C. G. (1996) Internal Time Formalism for Spacetimes with Two Killing Vectors, Phys. Rev. D53, 5634. See also Torre, C. G. (1998) Midi-superspace Models of Canonical Quantum Gravity, gr-qc/9806122

    ADS  MathSciNet  Google Scholar 

  274. Louko, J., Whiting, B. F. and Friedman, J. L. (1998) Hamiltonian spacetime dynamics with a spherical null-dust shell, Phys. Rev. D57, 2279

    ADS  MathSciNet  Google Scholar 

  275. Griffiths, J. B., Miccicho, S. (1997) The Weber-Wheeler-Bonnor pulse and phase shifts in gravitational soliton interactions, Phys. Lett. A233, 37

    ADS  Google Scholar 

  276. Piran, T., Safier, P. N. and Stark, R. F. (1985) General numerical solution of cylindrical gravitational waves, Phys. Rev. D32, 3101

    ADS  Google Scholar 

  277. Wilson, J. P. (1997) Distributional curvature of time dependent cosmic strings, Class. Quantum Grav. 14, 3337

    Article  MATH  ADS  Google Scholar 

  278. Bičák, J., Schmidt, B. G. (1989) On the asymptotic structure of axisymmetric radiative spacetimes, Class. Quantum Grav. 6, 1547

    Article  ADS  MATH  Google Scholar 

  279. Bičák, J., Pravdová, A. (1998) Symmetries of asymptotically flat electrovacuum spacetimes and radiation, J. Math. Phys. 39, 6011

    Article  ADS  MATH  MathSciNet  Google Scholar 

  280. Bičák, J., Pravdová, A. (1999) Axisymmetric electrovacuum spacetimes with a translational Killing vector at null infinity, Class. Quantum Grav. 16, 2023

    Article  ADS  MATH  Google Scholar 

  281. Robinson, I., Trautman, A. (1962) Some spherical gravitational waves in general relativity, Proc. Roy. Soc. Lond. A265, 463; see also [61]

    MathSciNet  Google Scholar 

  282. Chruściel, P. T. (1992) On the global structure of Robinson-Trautman spacetimes, Proc. Roy. Soc. Lond. A 436, 299; Chruściel, P. T., Singleton, D. B. (1992) Non-Smoothness of Event Horizons of Robinson-Trautman Black Holes, Commun. Math. Phys. 147, 137, and references therein

    Google Scholar 

  283. Bičák, J., Podolský, J. (1995) Cosmic no-hair conjecture and black-hole formation: An exact model with gravitational radiation, Phys. Rev. D52, 887

    ADS  Google Scholar 

  284. Bičák, J., Schmidt, B. G. (1984) Isometries compatible with gravitational radiation, J. Math. Phys. 25, 600

    Article  ADS  MathSciNet  Google Scholar 

  285. Bonnor, W. B., Swaminarayan, N. S. (1964) An exact solution for uniformly accelerated particles in general relativity, Zeit. f. Phys. 177, 240. See also the original paper on negative mass in general relativity by Bondi, H. (1957) Rev. Mod. Phys. 29, 423

    Article  MATH  ADS  MathSciNet  Google Scholar 

  286. Israel, W., Khan, K. A. (1964) Collinear particles and Bondi dipoles in general relativity, Nuov. Cim. 33, 331

    Article  MATH  MathSciNet  Google Scholar 

  287. Bičák J. (1985) On exact radiative solutions representing finite sources, in Galaxies, axisymmetric systems and relativity (Essays presented to W. B. Bonnor on his 65th birthday), ed. M. A. H. MacCallum, Cambridge University Press, Cambridge

    Google Scholar 

  288. Bičák, J., Schmidt, B. G. (1989) Asymptotically flat radiative space-times with boost-rotation symmetry: the general structure, Phys. Rev. D40, 1827

    ADS  Google Scholar 

  289. Bičák J. (1987) Radiative properties of spacetimes with the axial and boost symmetries, in Gravitation and Geometry (A volume in honour of Ivor Robinson), eds. W. Rindler and A. Trautman, Bibliopolis, Naples

    Google Scholar 

  290. Bičák, J., Hoenselaers, C. and Schmidt, B. G. (1983) The solutions of the Einstein equations for uniformly accelerated particles without nodal singularities II. Self-accelerating particles, Proc. Roy. Soc. Lond. A390, 411

    Google Scholar 

  291. Bičák, J., Reilly, P. and Winicour, J. (1988) Boost rotation symmetric gravitational null cone data, Gen. Rel. Grav. 20, 171

    Article  ADS  Google Scholar 

  292. Gómez R., Papadopoulos P. and Winicour J. (1994) J. Math. Phys. 35, 4184

    Article  MATH  ADS  MathSciNet  Google Scholar 

  293. Alcubierre, M., Gundlach, C. and Siebel, F. (1997) Integration of geodesics as a test bed for comparing exact and numerically generated spcetimes, in Abstracts of Plenary Lectures and Contributed Papers (GR15), Inter-University Centre for Astronomy and Astrophysics Press, Pune

    Google Scholar 

  294. Bičák, J., Hoenselaers, C. and Schmidt B.G., (1983) The solutions of the Einstein equations for uniformly accelerated particles without nodal singularities I. Freely falling particles in external fields, Proc. Roy. Soc. Lond. A390, 397

    Google Scholar 

  295. Bičák, J. (1980) The motion of a charged black hole in an electromagnetic field, Proc. Roy. Soc. Lond. A371, 429

    Google Scholar 

  296. Hawking, S. W., Horowitz, G. T. and Ross, S. F. (1995) Entropy, area, and black hole pairs, Phys. Rev. D51, 4302; Mann, R. B., Ross, S. F. (1995) Cosmological production of charged black hole pairs, Phys. Rev. D52, 2254; Hawking, S. W., Ross, S. F. (1995) Pair production of black holes on cosmic strings, Phys. Rev. Lett. 75, 3382

    ADS  MathSciNet  Google Scholar 

  297. Plebański, J., Demiański, M. (1976) Rotating, charged and uniformly accelerating mass in general relativity, Ann. Phys. (N.Y.) 98, 98

    Article  ADS  MATH  Google Scholar 

  298. Bičák, J., Pravda, V. (1999) Spinning C-metric: radiative spacetime with accelerating, rotating black holes, Phys. Rev. D60, 044004

    Google Scholar 

  299. Belinsky, V. A., Khalatnikov, I. M. and Lifshitz, E. M. (1970) Oscillatory approach to a singular point in the relativistic cosmology, Adv. in Phys. 19, 525

    Article  ADS  Google Scholar 

  300. Belinsky, V. A., Khalatnikov, I. M. and Lifshitz, E. M. (1982) A general solution of the Einstein equations with a time singularity, Adv. in Phys. 31, 639

    Article  ADS  Google Scholar 

  301. Ellis, G. F. R. (1996) Contributions of K. Gödel to Relativity and Cosmology, in Gödel’96: Logical Foundations of Mathematics, Computer Science and Physics—Kurt Gödel’s Legacy, ed. P. Hájek, Springer-Verlag, Berlin-Heidelberg; see also preprint 1996/7 of the Dept. of Math. and Appl. Math., University of Cape Town

    Google Scholar 

  302. Kantowski, R., Sachs, R. K. (1966) Some Spatially Homogenous Anisotropic Relativistic Cosmological Models, J. Math. Phys. 7, 443

    Article  ADS  MathSciNet  Google Scholar 

  303. Thorne, K. S. (1967) Primordial element formation, primordial magnetic fields, and the isotropy of the universe, Astrophys. J. 148, 51

    Article  ADS  Google Scholar 

  304. Ryan, M. P., Shepley, L. C. (1975) Homogeneous Relativistic Cosmologies, Princeton University Press, Princeton

    Google Scholar 

  305. MacCallum, M. A. H. (1979) Anisotropic and inhomogeneous relativistic cosmologies, in General Relativity (An Einstein Centenary Survey), eds. S. W. Hawking and W. Israel, Cambridge University Press, Cambridge

    Google Scholar 

  306. Obregón, O., Ryan, M. P. (1998) Quantum Planck size black hole states without a horizon, Modern Phys. Lett. A 13, 3251; see also references therein

    Article  ADS  Google Scholar 

  307. Nojiri, S., Obregón, O., Odintsov, S. D. and Osetrin, K. E. (1999) (Non)singular Kantowski-Sachs universe from quantum spherically reduced matter, Phys. Rev. D60, 024008

    Google Scholar 

  308. Heckmann, O., Schücking, E. (1962) Relativistic Cosmology, in Gravitation: an introduction to current research, ed. L. Witten, J. Wiley and Sons, New York

    Google Scholar 

  309. Zel’dovich, Ya. B., Novikov, I. D. (1983) Relativistic Astrophysics, Volume 2: The Structure and Evolution of the Universe, The University of Chicago Press, Chicago

    Google Scholar 

  310. MacCallum, M. A. H. (1994) Relativistic cosmologies, in Deterministic Chaos in General Relativity, eds. D. Hobill, A. Burd and A. Coley, Plenum Press, New York

    Google Scholar 

  311. Wainwright, J., Ellis, G. F. R. eds. (1997) Dynamical Systems in Cosmology, Cambridge University Press, Cambridge

    Google Scholar 

  312. Misner, C. W. (1969) Mixmaster universe, Phys. Rev. Lett. 22, 1071

    Article  MATH  ADS  Google Scholar 

  313. Hu, B. L., Ryan, M. P. and Vishveshwara, C. V. eds. (1993) Directions in General Relativity, Vol. 1 (Papers in honor of Charles Misner), Cambridge University Press, Cambridge

    Google Scholar 

  314. Uggla, C., Jantzen, R. T. and Rosquist, K. (1995) Exact hypersurfacehomogeneous solutions in cosmology and astrophysics, Phys. Rev. D51, 5522

    ADS  MathSciNet  Google Scholar 

  315. Tanaka, T., Sasaki, M. (1997) Quantized gravitational waves in the Milne universe, Phys. Rev. D55, 6061

    ADS  Google Scholar 

  316. Lukash, V. N. (1975) Gravitational waves that conserve the homogeneity of space, Sov. Phys. JETP 40, 792

    ADS  MathSciNet  Google Scholar 

  317. Barrow, J. D., Sonoda, D. H. (1986) Asymptotic stability of Bianchi type universes, Physics Reports 139, 1

    Article  ADS  MathSciNet  Google Scholar 

  318. Kuchař, K. V., Ryan, M. P. (1989) Is minisuperspace quantization valid?: Taub in Mixmaster, Phys. Rev. D40, 3982. The approach was first used in Kuchař, K. V., Ryan, M. P. (1986) Can Minisuperspace Quantization be Justified?, in Gravitational Collapse and Relativity, eds. H. Sato and T. Nakamura, World Scientific, Singapore

    ADS  Google Scholar 

  319. Bogoyavlenski, O. I. (1985) Methods in the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics, Springer-Verlag, Berlin

    Google Scholar 

  320. Hobill, D., Burd, A. and Coley, A. eds. (1994) Deterministic Chaos in General Relativity, Plenum Press, New York

    Google Scholar 

  321. Rendall, A. (1997) Global dynamics of the Mixmaster model, Class. Quantum Grav. 14, 2341

    Article  MATH  ADS  MathSciNet  Google Scholar 

  322. Khalatnikov, I. M., Lifshitz, E. M., Khamin, K. M., Shehur, L. N. and Sinai, Ya. G. (1985) On the Stochasticity in Relativistic Cosmology, J. of Statistical Phys. 38, 97

    Article  ADS  Google Scholar 

  323. LeBlanc, V. G., Kerr, D. and Wainwright, J. (1995) Asymptotic states of magnetic Bianchi VI0 cosmologies, Class. Quantum Grav. 12, 513

    Article  MATH  ADS  MathSciNet  Google Scholar 

  324. LeBlanc, V. G. (1977) Asymptotic states of magnetic Bianchi I cosmologies, Class. Quantum Grav. 14, 2281

    Article  ADS  MathSciNet  Google Scholar 

  325. Jantzen, R. T. (1986) Finite-dimensional Einstein-Maxwell-scalar field system, Phys. Rev. D33, 2121

    ADS  MathSciNet  Google Scholar 

  326. LeBlanc, V. G. (1998) Bianchi II magnetic cosmologies, Class. Quantum Grav. 15, 1607

    Article  MATH  ADS  MathSciNet  Google Scholar 

  327. Belinsky, V. A., Khalatnikov, I. M. (1973) Effect of scalar and vector fields on the nature of the cosmological singularity, Soviet Physics JETP 36, 591

    ADS  MathSciNet  Google Scholar 

  328. Berger, B. K. (1999) Influence of scalar fields on the approach to a cosmological singularity, gr-qc/9907083

    Google Scholar 

  329. Wainwright, J., Coley, A. A., Ellis, G. F. R. and Hancock, M. (1998) On the isotropy of the Universe: do Bianchi VIIh cosmologies isotropize? Class. Quantum Grav. 15, 331

    Article  MATH  ADS  MathSciNet  Google Scholar 

  330. Weaver, M., Isenberg, J. and Berger, B. K. (1998) Mixmaster Behavior in Inomogeneous Cosmological Spacetimes, Phys. Rev. Lett. 80, 2984

    Article  ADS  Google Scholar 

  331. Berger, B. K., Moncrief, V. (1998) Evidence for an oscillatory singularity in generic U(1) cosmologies on T 3 × R, Phys. Rev. D58, 064023

    Google Scholar 

  332. Gowdy, R. H. (1971) Gravitational Waves in Closed Universes, Phys. Rev. Lett. 27, 826; Gowdy, R. H. (1974) Vacuum Spacetimes with Two-Parameter Spacelike Isometry Groups and Compact Invariant Hypersurfaces: Topologies and Boundary Conditions, Ann. Phys. (N.Y.) 83, 203

    Article  ADS  Google Scholar 

  333. Carmeli, M., Charach, Ch. and Malin, S. (1981) Survey of cosmological models with gravitational scalar and electromagnetic waves, Physics Reports 76, 79

    Article  ADS  MathSciNet  Google Scholar 

  334. Chruściel, P. T. (1990) On Space-Times with U(1)×U(1) Symmetric Compact Cauchy Surfaces, Ann. Phys. (N. Y.) 202, 100

    Article  ADS  MATH  Google Scholar 

  335. Gowdy, R. H. (1975) Closed gravitational-wave universes: Analytic solutions with two-parameter symmetry, J. Math. Phys. 16, 224

    Article  ADS  Google Scholar 

  336. Charach,&Ch. (1979) Electromagnetic Gowdy universe, Phys. Rev. D19, 3516

    ADS  Google Scholar 

  337. Bičák, J., Griffiths, J. B. (1996) Gravitational Waves Propagating into Friedmann-Robertson-Walker Universes, Ann. Phys. (N.Y) 252, 180

    Article  ADS  MATH  Google Scholar 

  338. Berger, B. K., Chruściel, P. T., Isenberg, J. and Moncrief, V. (1997) Global Foliations of Vacuum Spacetimes with T 2 Isometry, Ann. Phys. (N.Y.) 260, 117

    Article  MATH  ADS  Google Scholar 

  339. Chruściel, P. T., Isenberg, J. and Moncrief, V. (1990) Strong cosmic censorship in polarized Gowdy spacetimes, Class. Quantum Grav. 7, 1671

    Article  ADS  MATH  Google Scholar 

  340. Moncrief, V. (1997) Spacetime Singularities and Cosmic Censorship, in Proc. of the 14th International Conference on General Relativity and Grativation, eds. M. Francaviglia, G. Longhi, L. Lusanna and E. Sorace, World Scientific, Singapore

    Google Scholar 

  341. Kichenassamy, S., Rendall, A. D. (1998) Analytic description of singularities in Gowdy spacetimes, Class. Quantum Grav. 15, 1339

    Article  MATH  ADS  MathSciNet  Google Scholar 

  342. Kichenassamy, S. (1996) Nonlinear Wave Equations, Marcel Dekker Publ. New York

    MATH  Google Scholar 

  343. Adams, P. J., Hellings, R. W., Zimmermann, R. L., Farhoosh, H., Levine, D. I. and Zeldich, S. (1982) Inhomogeneous cosmology: gravitational radiation in Bianchi backgrounds, Astrophys. J. 253, 1

    Article  ADS  Google Scholar 

  344. Belinsky, V., Zakharov, V. (1978) Integration of the Einstein equations by means of the inverse scattering problem technique and construction of exact soliton solutions, Sov. Phys. JETP 48, 985

    ADS  Google Scholar 

  345. Carr, B. J., Verdaguer, E. (1983) Soliton solutions and cosmological gravitational waves, Phys. Rev. D28, 2995

    ADS  MathSciNet  Google Scholar 

  346. Belinsky, V. (1991) Gravitational breather and topological properties of gravisolitons, Phys. Rev. D44, 3109

    ADS  MathSciNet  Google Scholar 

  347. Kordas, P. (1993) Properties of the gravibreather, Phys. Rev. D48, 5013

    ADS  Google Scholar 

  348. Alekseev, G. A. (1988) Exact solutions in the general theory of relativity, Proceedings of the Steklov Institute of Mathematics, Issue 3, p. 215

    Google Scholar 

  349. Verdaguer, E. (1993) Soliton solutions in spacetimes with spacelike Killing fields, Physics Reports 229, 1

    Article  ADS  MathSciNet  Google Scholar 

  350. Katz, J., Bičák, J. and Lynden-Bell, D. (1997) Relativistic conservation laws and integral constraints for large cosmological perturbations, Phys. Rev. D55, 5957

    ADS  Google Scholar 

  351. Uzan, J. P., Deruelle, M. and Turok, N. (1998) Conservation laws and cosmological perturbations in curved universes, Phys. Rev. D57, 7192

    ADS  MathSciNet  Google Scholar 

  352. Beig, R., Simon, W. (1992) On the Uniqueness of Static Perfect-Fluid Solutions in General Relativity, Commun. Math. Phys. 144, 373

    Article  MATH  ADS  MathSciNet  Google Scholar 

  353. Lindblom, L., Masood-ul-Alam (1994) On the Spherical Symmetry of Static Stellar Models, Commun. Math. Phys. 162, 123

    Article  MATH  ADS  MathSciNet  Google Scholar 

  354. Rendall A. (1997) Solutions of the Einstein equations with matter, in Proc. of the 14th International Conference on General Relativity and Gravitation, eds. M. Francaviglia, G. Longhi, L. Lusanna and E. Sorace, World Scientific, Singapore

    Google Scholar 

  355. Bartnik, R., McKinnon, J. (1988) Particlelike Solutions of the Einstein-Yang-Mills Equations, Phys. Rev. Lett. 61, 141

    Article  ADS  MathSciNet  Google Scholar 

  356. Volkov, M. S., Gal’tsov, D. V. (1999) Gravitating Non-Abelian Solitons and Black Holes with Yang-Mills Fields, Physics Reports 319, 1

    Article  ADS  MathSciNet  Google Scholar 

  357. Rendall, A. D., Tod, K. P. (1999) Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric, Class. Quantum Grav. 16, 1705

    Article  MATH  ADS  MathSciNet  Google Scholar 

  358. Carr, B. J., Coley, A. A. (1999) Self-similarity in general relativity, Class. Quantum Grav. 16, R 31

    Article  ADS  MathSciNet  Google Scholar 

  359. Gundlach, C. (1998) Critical Phenomena in Gravitational Collapse, Adv. Theor. Math. Phys. 2, 1

    MATH  MathSciNet  Google Scholar 

  360. Krasiński, A. (1997) Inhomogeneous Cosmological Models, Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bičák, J. (1999). Selected Solutions of Einstein’s Field Equations: Their Role in General Relativity and Astrophysics. In: Schmidt, B.G. (eds) Einstein’s Field Equations and Their Physical Implications. Lecture Notes in Physics, vol 540. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46580-4_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-46580-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67073-5

  • Online ISBN: 978-3-540-46580-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics