Skip to main content

Nature of Activated Bleomycin

  • Chapter
  • First Online:
Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations

Part of the book series: Structure and Bonding ((STRUCTURE,volume 97))

Abstract

Activated bleomycin is the drug species seen to be kinetically competent to initiate DNA degradation in the reaction of bleomycin, Fe(II), and O2. It also forms in reactions of bleomycin with Fe(III) and peroxide, or bleomycin with superoxide and either Fe(III) or Fe(II). Efforts to characterize this transient species proceeded by kinetic and spectroscopic strategies. Activated bleomycin now appears to be a drug-ferric-peroxide complex, but this may not be the proximate active drug species. Assuming that activated bleomycin peroxide cleavage yields a reactive product analogous to peroxidase compound I explains many characteristics of bleomycin-mediated DNA degradation reactions. DNA degradation is responsible for the cytotoxic and antitumor activities of this clinically useful antibiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) J Antibiot (Tokyo) Ser A 19: 200

    CAS  Google Scholar 

  2. Umezawa H, Suhara Y, Takita T, Maeda K (1966) J Antibiot (Tokyo) Ser A 19: 210

    CAS  Google Scholar 

  3. Lazo JS, Chabner BA (1996) Bleomycin. In: Chabner BA, Longo DL (eds) Cancer chemotherapy and biotherapy: principals and practice. Lippincott-Raven, Philadelphia, PA, p 379

    Google Scholar 

  4. Munn SE, Higgins E, Marshall M, Clement M (1996) Br J Dermatol 135: 969

    Article  CAS  Google Scholar 

  5. Drocourt D, Calmels T, Reynes J-P, Baron M, Tiraby G (1990) Nucl Acids Res 18: 4009

    Article  CAS  Google Scholar 

  6. Suzuki H, Nagai K, Yamaki H, Tanaka N, Umezawa H (1968) J Antibiot (Tokyo) 21: 379

    CAS  Google Scholar 

  7. Onishi T, Shimada K, Takagi Y (1973) Biochem Biophys Acta 312: 248

    CAS  Google Scholar 

  8. Gudas LJ, Pardee AB (1976) J Mol Biol 101: 459

    Article  CAS  Google Scholar 

  9. Moore CW (1978) Mutation Res 58: 41

    Article  CAS  Google Scholar 

  10. Murray V, Martin RF (1985) J Biol Chem 260: 10, 389

    CAS  Google Scholar 

  11. Povirk LF, Goldberg IH (1987) Biochimie 69: 815

    Article  CAS  Google Scholar 

  12. Umezawa K, Haresaku M, Muramatsu M, Matsushima T (1987) Biomed Pharmacother 41: 214

    CAS  Google Scholar 

  13. Povirk (1996) Mutation Res 355: 71

    Google Scholar 

  14. Levin JD, Demple B (1996) Nucleic Acids Res 24: 885

    Article  CAS  Google Scholar 

  15. Nagai N, Yamaki H, Suzuki H, Tanaka N, Umezawa H (1969) Biochim Biophys Acta 179: 165

    CAS  Google Scholar 

  16. Burger RM (1998) Chem Rev 98: 1153

    Article  CAS  Google Scholar 

  17. Nagai K, Suzuki H, Tanaka N, Umezawa H (1969) J Antibiot (Tokyo) 22: 624

    CAS  Google Scholar 

  18. Carter BJ, de Vroom E, van der Marel GA, van Boom JH, Hecht SM (1990) Proc Natl Acad Sci USA 87: 9373

    Article  CAS  Google Scholar 

  19. Lim ST, Jue CK, Moore CW, Lipke PN (1995) J Bacteriol 177: 3534

    CAS  Google Scholar 

  20. Sausville EA, Peisach J, Horwitz SB (1976) Biochem Biophys Res Commun 73: 814

    Article  CAS  Google Scholar 

  21. Kuramochi H, Takahashi K, Takita T, Umezawa H (1981) J Antibiot (Tokyo) 34: 578

    Google Scholar 

  22. Burger RM, Peisach J, Horwitz SB (1981) J Biol Chem 256: 11,636

    CAS  Google Scholar 

  23. Sam JW, Tang X-J, Peisach J (1994) J Am Chem Soc 116: 5250

    Article  CAS  Google Scholar 

  24. Burger RM, Tian G, Drlica K (1995) J Am Chem Soc 117: 1167

    Article  CAS  Google Scholar 

  25. Burger RM, Kent TA, Horwitz SB, Münck E, Peisach J (1983) J Biol Chem 258: 1559

    CAS  Google Scholar 

  26. Barr JR, Van Atta RB, Natrajan A, Hecht SM, van der Marel GA, van Boom JH (1990) J Am Chem Soc 112: 4058

    Article  CAS  Google Scholar 

  27. Maeda K, Kosaka H, Yagishita K, Umezawa H (1956) J Antibiot (Ser A) 9: 82

    CAS  Google Scholar 

  28. Kawaguchi H, Tsukuira H, Tomita K, Konishi M, Saito K, Kobaru S, Numata K, Fujisawa K, Miyaski T, Hatori M, Koshiyama H (1977) J Antibiot (Tokyo) 30: 779

    CAS  Google Scholar 

  29. Claussen CA, Long EC (1999) Chem Rev 99: 2797

    Article  CAS  Google Scholar 

  30. Xu RX, Nettesheim D, Otvos JD, Petering DH (1994) Biochemistry 33: 907

    Article  CAS  Google Scholar 

  31. Caceres-Cortes J, Sugiyama H, Ikudome K, Saito I, Wang AH-J (1997) Eur J Biochem 244: 818

    Article  CAS  Google Scholar 

  32. Wu W, Vanderwall DE, Turner CJ, Kozarich JW, Stubbe J (1996) J Am Chem Soc 118: 1281

    Article  CAS  Google Scholar 

  33. Povirk LF, Wübker W, Köhnlein W, Hutchinson F (1977) Nucleic Acids Res 4: 3573

    Article  CAS  Google Scholar 

  34. Povirk LF, Köhnlein W, Hutchinson F (1978) Biochim Biophys Acta 521: 126

    CAS  Google Scholar 

  35. Burger RM, Berkowitz AR, Peisach J, Horwitz SB (1980) J Biol Chem 255: 11,832

    CAS  Google Scholar 

  36. Giloni L, Takeshita M, Johnson F, Iden C, Grollman AP (1981) J Biol Chem 256: 8608

    CAS  Google Scholar 

  37. Sugiyama H, Kilkuskie RE, Hecht SM, van der Marel GA, van Boom JH (1985) J Am Chem Soc 107: 7765

    Article  CAS  Google Scholar 

  38. Wu JC, Kozarich JW, Stubbe JA (1983) J Biol Chem 258: 4694

    CAS  Google Scholar 

  39. Absalon MJ, Kozarich JW, Stubbe J (1992) Nucleic Acids Res 20: 4179

    Article  CAS  Google Scholar 

  40. Haidle CW, Weiss KK, Kuo MT (1972) Mol Pharmacol 8: 531

    CAS  Google Scholar 

  41. Wu JC, Stubbe JA, Kozarich JW (1985) Biochemistry 24: 7569

    Article  CAS  Google Scholar 

  42. Sugiyama H, Xu C, Murugesan N, Hecht SM (1985) J Am Chem Soc 107: 4104

    Article  CAS  Google Scholar 

  43. Sugiyama H, Xu C, Murugesan N, Hecht SM, van der Marel GA, van Boom JH (1988) Biochemistry 27: 58

    Article  CAS  Google Scholar 

  44. Burger RM, Peisach J, Horwitz SB (1982) J Biol Chem 257: 3372

    CAS  Google Scholar 

  45. McGall GH, Rabow LE, Stubbe J, Kozarich JW (1987) J Am Chem Soc 109: 2836

    Article  CAS  Google Scholar 

  46. Albertini JP, Garnier-Suillerot A, Tosi L (1982) Biochem Biophys Res Commun 104: 557

    Article  CAS  Google Scholar 

  47. Sausville EA, Peisach J, Horwitz SB (1978) Biochemistry 17: 2740

    Article  CAS  Google Scholar 

  48. Burger RM, Horwitz SB, Peisach J, Wittenberg JB (1979) J Biol Chem 254: 12,299

    Google Scholar 

  49. Burger RM, Peisach J, Blumberg WE, Horwitz SB (1979) J Biol Chem 254: 10,906

    CAS  Google Scholar 

  50. Sugiura Y, Kikuchi T (1978) J Antibiot (Tokyo) 31: 1310

    CAS  Google Scholar 

  51. Dabrowiak JC, Greenaway FT, Santillo FS, Crooke ST (1979) Biochem Biophys Res Commun 91: 721

    Article  CAS  Google Scholar 

  52. Fulmer P, Petering DH (1994) Biochemistry 33: 5319

    Article  CAS  Google Scholar 

  53. Melnyk D, Horwitz SB, Peisach J (1981) Biochemistry 20: 5327

    Article  CAS  Google Scholar 

  54. Burger RM, Peisach J, Horwitz SB (1978) J Biol Chem 253: 4830

    CAS  Google Scholar 

  55. Ishida R, Takahashi T (1975) Biochem Biophys Res Commun 66: 1432

    Article  CAS  Google Scholar 

  56. Bickers DR, Dixit R, Mukhtar H (1984) Biochim Biophys Acta 781: 265

    CAS  Google Scholar 

  57. Sausville EA, Stein RW, Peisach J, Horwitz SB (1978) Biochemistry 17: 2746

    Article  CAS  Google Scholar 

  58. Lown JW (1979) Contribution of the Superoxide anion-hydroxyl radical pathway to the cleavage of DNA by bleomycin. In: Hecht SM (ed) Bleomycin: chemical, biochemical, and biological aspects. Springer, Berlin Heidelberg New York, p 184

    Google Scholar 

  59. Yamanaka N, Kato T, Nishida K, Ota K (1978) Cancer Res 38: 3900

    CAS  Google Scholar 

  60. Trush MA (1983) Chem-Biol Interactions 45: 65

    Article  CAS  Google Scholar 

  61. Ciriolo MR, Magliozzo RS, Peisach J (1987) J Biol Chem 262: 6290

    CAS  Google Scholar 

  62. Ciriolo MR, Peisach J, Magliozzo RS (1989) J Biol Chem 264: 1443

    CAS  Google Scholar 

  63. Sam JW, Tang X-J, Magliozzo RS, Peisach J (1995) J Am Chem Soc 117: 1012

    Article  CAS  Google Scholar 

  64. Lippai I, Magliozzo RS, Peisach J (1999) J Am Chem Soc 121: 780

    Article  CAS  Google Scholar 

  65. Petering DH, Byrnes RW, Antholione WE (1990) Chem Biol Interact 73: 133

    Article  CAS  Google Scholar 

  66. Chang C-H, Meares CF (1982) Biochemistry 21: 6332

    Article  CAS  Google Scholar 

  67. Haasnoot CAG, Pandit UK, Kruk C, Hilbers CW (1984) J Biomolec Struct Dyn 2: 449

    CAS  Google Scholar 

  68. Akkerman MAJ, Haasnoot CAG, Hilbers CW (1988) Eur J Biochem 173: 211

    Article  CAS  Google Scholar 

  69. Akkerman MAJ, Neijman EJWF, Wijmenga SS, Hilbers CW, Bermel W (1990) J Am Chem Soc 112: 7462

    Article  CAS  Google Scholar 

  70. Wu W, Vanderwall DE, Lui SM, Tang X-J, Turner CJ, Kozarich JW, Stubbe J (1996) J Am Chem Soc 118: 1268

    Article  CAS  Google Scholar 

  71. Manderville RA, Ellena JF, Hecht SM (1994) J Am Chem Soc 116: 10,851

    Article  CAS  Google Scholar 

  72. Manderville RA, Ellena JF, Hecht SM (1995) J Am Chem Soc 117: 7891

    Article  CAS  Google Scholar 

  73. Caceres-Cortes J, Sugiyama H, Ikudome K, Saito I, Wang AH-J (1997) Biochemistry 36: 9995

    Article  CAS  Google Scholar 

  74. Lehmann TE, Ming L-J, Rosen ME, Que L Jr (1997) Biochemsitry 36: 2807

    Article  CAS  Google Scholar 

  75. Veselov A, Sun H, Sienkiewicz A, Taylor H, Burger RM, Scholes CP (1995) J Am Chem Soc 117: 7508

    Article  CAS  Google Scholar 

  76. Veselov A, Burger RM, Scholes CP (1998) J Am Chem Soc 120: 1030

    Article  CAS  Google Scholar 

  77. Takahashi S, Sam JW, Peisach J, Rousseau DL (1994) J Am Chem Soc 116: 4408

    Article  CAS  Google Scholar 

  78. Burger RM, Blanchard JS, Horwitz SB, Peisach J (1985) J Biol Chem 260: 15,406

    CAS  Google Scholar 

  79. Roberts JE, Hoffman BM, Rutter R, Hager LP (1981) J Am Chem Soc 103: 7654

    Article  CAS  Google Scholar 

  80. Lumpkin O, Dixon WT (1971) J Chem Phys 71: 3550

    Article  Google Scholar 

  81. Westre TE, Loeb KE, Zaleski JM, Hedman B, Hodgson KO, Solomon EI (1995) J Am Chem Soc 117: 1309

    Article  CAS  Google Scholar 

  82. Padbury G, Sligar S (1987) Fed Proc 46: 2265

    Google Scholar 

  83. Natrajan A, Hecht SM, Van der Marel GA, Van Boom JH (1990) J Am Chem Soc 112: 4532

    Article  CAS  Google Scholar 

  84. Rabow LE, Stubbe J, Kozarich JW (1990) J Am Chem Soc 112: 3196

    Article  CAS  Google Scholar 

  85. McGall GH, Rabow LE, Ashley RG, Wu SH, Kozarich JW, Stubbe J (1992) J Am Chem Soc 114: 4958

    Article  CAS  Google Scholar 

  86. Rabow LE, McGall GH, Stubbe J, Kozarich JW (1990) J Am Chem Soc 112: 3203

    Article  CAS  Google Scholar 

  87. Absalon MJ, Wu W, Kozarich JW, Stubbe J (1995) Biochemistry 34: 2076

    Article  CAS  Google Scholar 

  88. Sugiyama H, Sera T, Dannoue Y, Marumoto R, Saito I (1991) J Am Chem Soc 113: 2290

    Article  CAS  Google Scholar 

  89. Sugiyama H, Ohmori K, Saito I (1994) J Am Chem Soc 116: 10,326

    Article  CAS  Google Scholar 

  90. Bigeleisen J (1949) J Chem Phys 17: 675

    Article  CAS  Google Scholar 

  91. Fry A (1970) Heavy atom isotope effects in organic reaction mechanism studies. In: Collins CJ, Bowman NS (eds) Isotope effects in chemical reactions. Van Nostrand Reinhold, New York, p 364

    Google Scholar 

  92. Klinman JP (1978) Adv Enzymol 46: 415

    CAS  Google Scholar 

  93. Rashid R, Langfinger D, Wagner R, Schuchmann H-P, von Sonntag C (1999) Int J Radiat 75: 101

    Article  CAS  Google Scholar 

  94. Takeshita M, Grollman AP (1979) A molecular basis for the interaction of bleomycin with DNA. In: Hecht SM (ed) Bleomycin: chemical, biochemical, and biological aspects. Springer, Berlin Heidelberg New York, p 207

    Google Scholar 

  95. Burger RM, Drlica K (1996) Bleomycin reaction pathways: kinetic approaches. In: Meunier B (ed) DNA and RNA cleavers and chemotherapy of cancer and viral disease. Kluwer, Dordrecht, Netherlands, p 91

    Google Scholar 

  96. Burger RM, Projan SJ, Horwitz SB, Peisach J (1986) J Biol Chem 261: 15,955

    CAS  Google Scholar 

  97. Burger RM, Drlica K, Birdsall B (1994) J Biol Chem 269: 25,978

    CAS  Google Scholar 

  98. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100: 235

    Article  CAS  Google Scholar 

  99. Boger DL, Ramsey TM, Cai H, Hoehn ST, Kozarich JW, Stubbe J ( 1998) J Am Chem Soc 120: 53

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burger, R.M. (2000). Nature of Activated Bleomycin. In: Meunier, B. (eds) Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations. Structure and Bonding, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46592-8_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-46592-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66943-2

  • Online ISBN: 978-3-540-46592-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics