Skip to main content

The Minimum Latency Problem Is NP-Hard for Weighted Trees

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2337))

Abstract

In the minimum latency problem (MLP) we are given n points v 1,..., v n and a distance d(v i,v j) between any pair of points. We have to find a tour, starting at v 1 and visiting all points, for which the sum of arrival times is minimal. The arrival time at a point v i is the traveled distance from v 1 to v i in the tour. The minimum latency problem is MAX-SNP-hard for general metric spaces, but the complexity for the problem where the metric is given by an edge-weighted tree has been a long-standing open problem. We show that the minimum latency problem is NP-hard for trees even with weights in {0,1}.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Afrati, S. Cosmadakis, C. Papadimitriou, G. Papageorgiou, N. Papakostantinou, The complexity of the traveling repairman problem, RAIRO Informatique Theorique et Applications 20 (1986), 79–87.

    MathSciNet  MATH  Google Scholar 

  2. S. Arora, G. Karakostas, Approximation schemes for minimum latency problems, Proceedings of the 31st ACM Symposium on Theory of Computing (Atlanta, 1999), 688–693.

    Google Scholar 

  3. S. Arora, G. Karakostas, A 2+ε approximation for the k-MST problem, Proceedings of the 11th SIAM Symposium on Discrete Algorithms (SODA) (San Francisco, 2000), 754–759.

    Google Scholar 

  4. G. Ausiello, S. Leonardi, A. Marchetti-Spaccamela, On salesmen, repairmen, spiders, and other traveling agents, Proceedings of the 4th Italian Conference on Algorithms and Complexity (Rome, Italy, 2000), Lecture Notes in Computer Science 1767, Springer, Berlin (2000), 1–16.

    Google Scholar 

  5. I. Averbakh, O. Berman, Sales-delivery man problems on treelike networks, Networks 25 (1995), 45–58.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Blum, P. Chalasani, D. Coppersmith, W. Pulleyblank, P. Raghavan, M. Sudan, The minimum latency problem, Proceedings of the 26th ACM Symposium on the Theory of Computing (Montreal, Quebec, Canada, 1994), 163–171.

    Google Scholar 

  7. F.A. Chudak, T. Roughgarden, D.P. Williamson, Approximate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangean relaxation, Proceedings of the 8th International Conference on Integer Programming and Combinatorial Optimization (IPCO) (Utrecht, The Netherlands, 2001), Lecture Notes in Computer Science 2081, Springer, Berlin (2001), 60–70.

    Chapter  Google Scholar 

  8. A. GarcĂ­a, P. JodrĂ¡, J. Tejel, A note on the traveling repairman problem, Pre-publications del seminario mathematico 3, University of Zaragoza, Spain (2001).

    Google Scholar 

  9. M.R. Garey, D.S. Johnson, Complexity results for multiprocessor scheduling under resource constraints, SIAM Journal of Computing 4 (1975), 397–411.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Garg, A 3-approximation for the minimum tree spanning k vertices, Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science (Burlington, VT, USA, 1996), IEEE Computer Society (1996), 302–309.

    Google Scholar 

  11. M. Goemans, J. Kleinberg, An improved approximation ratio for the minimum latency problem, Mathematical Programming 82 (1998), 111–124.

    MathSciNet  MATH  Google Scholar 

  12. E. Koutsoupias, C. Papadimitriou, M. Yannakakis, Searching a fixed graph, Proceedings of the 23rd International Colloquium on Automata, Languages, and Programming (Paderborn, Germany, 1996), Lecture Notes in Computer Science 1099, Springer (1996), 280–289.

    Chapter  Google Scholar 

  13. J.K. Lenstra, W.E. de Paepe, J. Sgall, R.A. Sitters, L. Stougie, Computer-aided complexity classification of dial-a-ride problems, to be published.

    Google Scholar 

  14. E. Minieka, The delivery man problem on a tree network, paper presented at the 1984 ORSA/TIMS San Francisco Meeting (1984).

    Google Scholar 

  15. E. Minieka, The delivery man problem on a tree network, Annals of Operations Research 18 (1989), 261–266.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Sahni, T. Gonzalez, P-complete approximation problems, Journal of the Association for Computing Machinery 23 (1976), 555–565.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Simchi-Levi, O. Berman, Minimizing the total flow time of n jobs on a network, IIE Transactions 23 (1991), 236–244.

    Article  Google Scholar 

  18. J.N. Tsitsiklis, Special cases of traveling salesman and repairman problems with time windows, Networks 22 (1992), 263–282.

    Article  MathSciNet  MATH  Google Scholar 

  19. I.R. Webb, Depth-first solutions for the deliveryman problem on tree-like networks: an evaluations using a permutation model, Transportation Science 30 (1996), 134–147.

    Article  MATH  Google Scholar 

  20. B.Y. Wu, Polynomial time algorithms for some minimum latency problems, Information Processing Letters 75 (2000), 225–229.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sitters, R. (2002). The Minimum Latency Problem Is NP-Hard for Weighted Trees. In: Cook, W.J., Schulz, A.S. (eds) Integer Programming and Combinatorial Optimization. IPCO 2002. Lecture Notes in Computer Science, vol 2337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47867-1_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-47867-1_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43676-8

  • Online ISBN: 978-3-540-47867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics