Skip to main content

Tractable Query Answering in Indefinite Constraint Databases: Basic Results and Applications to Querying Spatiotemporal Information

  • Conference paper
  • First Online:
Spatio-Temporal Database Management (STDBM 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1678))

Included in the following conference series:

Abstract

We consider the scheme of indefinite constraint databases proposed by Koubarakis. This scheme can be used to represent indefinite information arising in temporal, spatial and truly spatiotemporal applications. The main technical problem that we address in this paper is the discovery of tractable classes of databases and queries in this scheme. We start with the assumption that we have a class of constraints C with satisfiability and variable elimination problems that can be solved in PTIME. Under this assumption, we show that there are several general classes of databases and queries for which query evaluation can be done with PTIME data complexity. We then search for tractable instances of C in the area of temporal and spatial constraints. Classes of constraints with tractable satisfiability problems can be easily found in the literature. The largest class that we consider is the class of Horn disjunctive linear constraints over the rationals. Because variable elimination for Horn disjunctive linear constraints cannot be done in PTIME, we try to discover subclasses with tractable variable elimination problems. The class of UTVPIā‰  constraints is the largest class that we show to have this property. Finally, we restate the initial general results with C ranging over the newly discovered tractable classes. Tractable query answering problems for indefinite temporal and spatial constraint databases are identified in this way.

This research has been partially supported by European project CHOROCHRONOS (funded under Framework IV) and by a grant from the Greek Secretariat for Research and Technology. Spiros Skiadopoulos has also been supported by a postgraduate fellowship from NATO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abiteboul, P. Kanellakis, and G. Grahne. On the Representation and Querying of Sets of Possible Worlds. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 34ā€“48, 1987. 205

    Google ScholarĀ 

  2. J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the ACM, 26(11):832ā€“843, November 1983. 218

    ArticleĀ  MATHĀ  Google ScholarĀ 

  3. P. Balbiani, J.-F. Condotta, and L. F. del Cerro. Bidimensional Temporal Relations. In Proceedings of KRā€™98, June 1998. 218

    Google ScholarĀ 

  4. E. Bertino, A. Belussi, and B. Catania. Manipulating Spatial Data in Constraint Databases. In M. Scholl and A. Voisard, editors, Proc. of the Fifth Int. Symp. on Spatial Databases, number 1262 in Lecture Notes in Computer Science, pages 115ā€“140, Berlin, Germany, July 1997. Springer Verlag, Berlin. 205, 211

    Google ScholarĀ 

  5. V. Brusoni, L. Console, and P. Terenziani. On the computational complexity of querying bounds on differences constraints. Artificial Intelligence, 74(2):367ā€“379, 1995. 206, 212, 219

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  6. A. Chandra and D. Harel. Structure and Complexity of Relational Queries. Journal of Computer and System Sciences, 25:99ā€“128, 1982. 212

    ArticleĀ  MATHĀ  Google ScholarĀ 

  7. T. Dean and M. Boddy. Reasoning About Partially Ordered Events. Artificial Intelligence, 36:375ā€“399, 1988. 220

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  8. R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks. In R. Brachman, H. Levesque, and R. Reiter, editors, Proceedings of 1st International Conference on Principles of Knowledge Representation and Reasoning, pages 83ā€“93, Toronto, Ontario, 1989. 217

    Google ScholarĀ 

  9. D. Q. Goldin. Constraint Query Algebras. PhD thesis, Dept. of Computer Science, Brown University, 1997. 217, 218

    Google ScholarĀ 

  10. D. Q. Goldin and P. Kanellakis. Constraint Query Algebras. Constraints, 1(1):45ā€“83, 1997. 217, 218

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  11. G. Grahne. The Problem of Incomplete Information in Relational Databases. Technical Report Report A-1989-1, Department of Computer Science, University of Helsinki, Finland, 1989. Also published as Lecture Notes in Computer Science 554, Springer Verlag, 1991. 205, 208

    Google ScholarĀ 

  12. S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE system for complex spatial queries. In Proceedings of ACM SIGMOD International Conference on Management of Data, pages 213ā€“224, 1998. 205, 211

    Google ScholarĀ 

  13. S. Grumbach and J. Su. Finitely representable databases. In Proceedings of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 289ā€“300, 1994. 205

    Google ScholarĀ 

  14. S. Grumbach, J. Su, and C. Tollu. Linear constraint databases. In D. Leivant, editor, Proceedings of the Logic and Computational Complexity Workshop, Indianapolis, 1994. Springer Verlag. To appear in LNCS. 205

    Google ScholarĀ 

  15. H.-W. Guesgen. Spatial reasoning based on Allenā€™s temporal logic. Technical Report TR-89-094, ICSI, 1989. 218

    Google ScholarĀ 

  16. R. H. Gueting, M. H. Bohlen, M. Erwing, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. A Foundation for Representing and Querying Moving Objects. Technical Report 238-9, Informatik, FernUniversitat, 1998. 205, 211

    Google ScholarĀ 

  17. W. Harvey and P. Stuckey. A unit two variable per inequality integer constraint solver for constraint logic programming. In Proceedings of Australian Computer Science Conference (Australian Computer Science Communications), pages 102ā€“111, 1997. 217

    Google ScholarĀ 

  18. D. S. Hochbaum and J. Naor. Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM Journal of Computing, 23(6):1179ā€“1192, 1994. 218

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  19. T. Imielinski and W. Lipski. Incomplete Information in Relational Databases. Journal of ACM, 31(4):761ā€“791, 1984. 207, 208

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  20. Joxan Jaffar, Michael J. Maher, Peter Stuckey, and Ronald Yap. Beyond Finite Domains. In A. Borning, editor, Proceedings of PPCPā€™94, volume 874 of Lecture Notes in Computer Science, pages 86ā€“94. Springer Verlag, 1994. 217

    Google ScholarĀ 

  21. Jonsson, P. and BƤckstrƶm, C. A Linear Programming Approach to Temporal Reasoning. In Proceedings of AAAI-96, 1996. 205, 216

    Google ScholarĀ 

  22. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint Query Languages. In Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 299ā€“313, 1990. 205, 208, 211, 212

    Google ScholarĀ 

  23. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint Query Languages. Journal of Computer and System Sciences, 51:26ā€“52, 1995. 207, 217

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  24. M. Koubarakis. Database Models for Infinite and Indefinite Temporal Information. Information Systems, 19(2):141ā€“173, March 1994. 205

    Google ScholarĀ 

  25. M. Koubarakis. Foundations of Indefinite Constraint Databases. In A. Borning, editor, Proceedings of the 2nd International Workshop on the Principles and Practice of Constraint Programming (PPCPā€™94), volume 874 of Lecture Notes in Computer Science, pages 266ā€“280. Springer Verlag, 1994. 205, 208, 210, 211

    Google ScholarĀ 

  26. M. Koubarakis. Foundations of Temporal Constraint Databases. PhD thesis, Computer Science Division, Dept. of Electrical and Computer Engineering, National Technical University of Athens, February 1994. Available electronically from http://www.co.umist.ac.uk/~manolis. 205, 212

  27. M. Koubarakis. Databases and Temporal Constraints: Semantics and Complexity. In J. Clifford and A. Tuzhilin, editors, Recent Advances in Temporal Databases (Proceedings of the International Workshop on Temporal Databases, ZĆ¼rich, Switzerland, September 1995), Workshops in Computing, pages 93ā€“109. Springer, 1995. 210, 211

    Google ScholarĀ 

  28. M. Koubarakis. From Local to Global Consistency in Temporal Constraint Networks. In Proceedings of the 1st International Conference on Principles and Practice of Constraint Programming (CPā€™95), volume 976 of LNCS, pages 53ā€“69, Cassis, France, September 1995. 206, 217

    Google ScholarĀ 

  29. M. Koubarakis. Tractable Disjunctions of Linear Constraints. In Proceedings of the 2nd International Conference on Principles and Practice of Constraint Programming (CPā€™96), Boston, MA, August 1996. 297ā€“307. 205, 216, 217

    Google ScholarĀ 

  30. M. Koubarakis. From Local to Global Consistency in Temporal Constraint Networks. Theoretical Computer Science, 173:89ā€“112, February 1997. Invited submission to the special issue dedicated to the 1st International Conference on Principles and Practice of Constraint Programming (CP95), Editors: U. Montanari and F. Rossi. 206, 217

    Google ScholarĀ 

  31. M. Koubarakis. The Complexity of Query Evaluation in Indefinite Temporal Constraint Databases. Theoretical Computer Science, 171:25ā€“60, January 1997. Special Issue on Uncertainty in Databases and Deductive Systems, Editor: L. V. S. Lakshmanan. 205, 206, 207, 208, 210, 211, 212

    Google ScholarĀ 

  32. M. Koubarakis and S. Skiadopoulos. Querying Temporal Constraint Networks in PTIME. In Proceedings of AAAI-99, 1999. Forthcoming. 206

    Google ScholarĀ 

  33. G. M. Kuper, S. Ramaswamy, K. Shim, and J. Su. A Constrint-Based Spatial Extension to SQL. In Proceedings of ACM-GIS98, pages 112ā€“117, 1998. 205

    Google ScholarĀ 

  34. R. Laurini and D. Thompson. Fundamentals of Spatial Information Systems. Academic Press, 1992. 205

    Google ScholarĀ 

  35. Bernhard Nebel and Hans-JĆ¼rgen BĆ¼rckert. Reasoning about temporal relations: A maximal tractable subclass of Allenā€™s interval algebra. Journal of the ACM, 42(1):43ā€“66, January 1995. 218

    ArticleĀ  MATHĀ  Google ScholarĀ 

  36. D. Papadias, Y. Theodoridis, T. Sellis, and M. Egenhofer. Topological Relations in theWorld of Minimum Bounding Rectangles: A Study with R-trees. In Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, pages 92ā€“103, 1995. 218

    Google ScholarĀ 

  37. J. Paredaens. Spatial Databases: the Final Frontier. In Proceedings of ICDT-95, pages 14ā€“32, 1995. 205

    Google ScholarĀ 

  38. P. Z. Revesz. A Closed Form for Datalog Queries with Integer Order. In Proceedings of the 3rd International Conference on Database Theory, pages 187ā€“201, 1990. 212

    Google ScholarĀ 

  39. Robert Shostak. Deciding Linear Inequalities by Computing Loop Residues. Journal of the ACM, 28(4):769ā€“779, 1981. 218

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  40. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Objects. In Proceedings of ICDE-97, 1997. 205, 209, 211

    Google ScholarĀ 

  41. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Querying the uncertain position of moving objects. In Temporal Databases: Research and Practice, volume 1399, pages 310ā€“337. Springer Verlag, 1998. 209, 211

    ArticleĀ  Google ScholarĀ 

  42. V. S. Subrahmanian. Principles of Multimedia Database Systems. Morgan Kaufmann, 1998. 205

    Google ScholarĀ 

  43. Peter van Beek. Temporal Query Processing with Indefinite Information. Artificial Intelligence in Medicine, 3:325ā€“339, 1991. 206, 212, 219

    ArticleĀ  Google ScholarĀ 

  44. Peter van Beek and Robin Cohen. Exact and Approximate Reasoning about Temporal Relations. Computational Intelligence, 6:132ā€“144, 1990. 218

    ArticleĀ  Google ScholarĀ 

  45. R. van der Meyden. The Complexity of Querying Indefinite Data About Linearly Ordered Domains (Preliminary Version). In Proceedings of the 11th ACM SIGACTSIGMOD-SIGART Symposium on Principles of Database Systems, pages 331ā€“345, 1992. Full version appears in JCSS, 54(1), pp. 113-135, 1997. 212, 219, 220

    Google ScholarĀ 

  46. M. Vardi. The Complexity of Relational Query Languages. In Proceedings of ACM SIGACT/SIGMOD Symposium on Principles of Database Systems, pages 137ā€“146, 1982. 212

    Google ScholarĀ 

  47. M. Vardi. Querying Logical Databases. Journal of Computer and System Sciences, u33:142ā€“160, 1986. 205

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  48. Marc Vilain and Henry Kautz. Constraint Propagation Algorithms for Temporal Reasoning. In Proceedings of AAAI-86, pages 377ā€“382, 1986. 219

    Google ScholarĀ 

  49. Marc Vilain, Henry Kautz, and Peter van Beek. Constraint Propagation Algorithms for Temporal Reasoning: A Revised Report. In D. S. Weld and J. de Kleer, editors, Readings in Qualitative Reasoning about Physical Systems, pages 373ā€“381. Morgan Kaufmann, 1989. 219

    Google ScholarĀ 

  50. M. Yannakakis. Expressing Combinatorial Optimization Problems by Linear Programs. In Proc. of ACM Symposium on the Theory of Computing, pages 223ā€“288, 1988. 216

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koubarakis, M., Skiadopoulos, S. (1999). Tractable Query Answering in Indefinite Constraint Databases: Basic Results and Applications to Querying Spatiotemporal Information. In: Bƶhlen, M.H., Jensen, C.S., Scholl, M.O. (eds) Spatio-Temporal Database Management. STDBM 1999. Lecture Notes in Computer Science, vol 1678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48344-6_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-48344-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66401-7

  • Online ISBN: 978-3-540-48344-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics