Skip to main content

Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1610))

Abstract

Gomory’s and Chvátal’s cutting-plane procedure proves recursively the validity of linear inequalities for the integer hull of a given polyhedron. The number of rounds needed to obtain all valid inequalities is known as the Chvátal rank of the polyhedron. It is well-known that the Chvátal rank can be arbitrarily large, even if the polyhedron is bounded, if it is of dimension 2, and if its integer hull is a 0/1-polytope. We prove that the Chvátal rank of polyhedra featured in common relaxations of many combinatorial optimization problems is rather small; in fact, the rank of any polytope contained in the n-dimensional 0/1-cube is at most 3n 2 lg n. This improves upon a recent result of Bockmayr et al. [6] who obtained an upper bound of O(n 3 lg n).

Moreover, we refine this result by showing that the rank of any polytope in the 0/1-cube that is defined by inequalities with small coefficients is O(n). The latter observation explains why for most cutting planes derived in polyhedral studies of several popular combinatorial optimization problems only linear growth has been observed (see, e.g., [13]); the coefficients of the corresponding inequalities are usually small. Similar results were only known for monotone polyhedra before.

Finally, we provide a family of polytopes contained in the 0/1-cube the Chvátal rank of which is at least (1+)n for some > 0; the best known lower bound was n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon and V. H. Vu. Anti-Hadamard matrices, coin weighing, threshold gates, and indecomposable hypergraphs. Journal of Combinatorial Theory, 79A:133–160, 1997.

    Article  MathSciNet  Google Scholar 

  2. E. Balas, S. Ceria, G. Cornuéjols, and N. R. Natraj. Gomory cuts revisited. Operations Research Letters, 19:1–9, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Balas and M. J. Saltzman. Facets of the three-index assignment polytope. Discrete Applied Mathematics, 23:201–229, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Barahona, M. Grötschel, and A. R. Mahjoub. Facets of the bipartite subgraph polytope. Mathematics of Operations Research, 10:340–358, 1985.

    MATH  MathSciNet  Google Scholar 

  5. A. Bockmayr and F. Eisenbrand. On the Chvátal rank of polytopes in the 0/1 cube. Research Report MPI-I-97-2-009, Max-Planck-Institut für Informatik, September 1997.

    Google Scholar 

  6. A. Bockmayr, F. Eisenbrand, M. E. Hartmann, and A. S. Schulz. On the Chvátal rank of polytopes in the 0/1 cube. Technical Report 616, Technical University of Berlin, Department of Mathematics, December 1998.

    Google Scholar 

  7. M. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with small coefficients. Journal of Symbolic Logic, 62:708–728, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. C. Boyd and W. H. Cunningham. Small travelling salesman polytopes. Mathematics of Operations Research, 16:259–271, 1991.

    MATH  MathSciNet  Google Scholar 

  9. S. C. Boyd, W. H. Cunningham, M. Queyranne, and Y. Wang. Ladders for travelling salesmen. SIAM Journal on Optimization, 5:408–420, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. C. Boyd and W. R. Pulleyblank. Optimizing over the subtour polytope of the travelling salesman problem. Mathematical Programming, 49:163–187, 1991.

    Article  MathSciNet  Google Scholar 

  11. V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics, 4:305–337, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Chvátal. Flip-flops in hypohamiltonian graphs. Canadian Mathematical Bulletin, 16:33–41, 1973.

    MATH  MathSciNet  Google Scholar 

  13. V. Chvátal, W. Cook, and M. E. Hartmann. On cutting-plane proofs in combinatorial optimization. Linear Algebra and its Applications, 114/115:455–499, 1989.

    Article  Google Scholar 

  14. W. Cook, C. R. Coullard, and Gy. Turán. On the complexity of cutting plane proofs. Discrete Applied Mathematics, 18:25–38, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial Optimization. John Wiley, 1998.

    Google Scholar 

  16. F. Eisenbrand. A note on the membership problem for the first elementary closure of a polyhedron. Technical Report 605, Technical University of Berlin, Department of Mathematics, November 1998. To appear in Combinatorica.

    Google Scholar 

  17. P. Erdös. On circuits and subgraphs of chromatic graphs. Mathematika, 9:170–175, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Fischetti. Three facet lifting theorems for the asymmetric traveling salesman polytope. In E. Balas, G. Cournuéjols, and R. Kannan, editors, Integer Programming and Combinatorial Optimization, pages 260–273. Proceedings of the 2nd IPCO Conference, 1992.

    Google Scholar 

  19. T. Fleiner, V. Kaibel, and G. Rote. Upper bounds on the maximal number of facets of 0/1-polytopes. Technical Report 98-327, University of Cologne, Department of Computer Science, 1998. To appear in European Journal of Combinatorics.

    Google Scholar 

  20. R. Giles and L. E. Trotter. On stable set polyhedra for K 1,3-free graphs. Journal of Combinatorial Theory, 31:313–326, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society, 64:275–278, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. E. Gomory. An algorithm for integer solutions to linear programs. In R. L. Graves and P. Wolfe, editors, Recent Advances in Mathematical Programming, pages 269–302. McGraw-Hill, 1963.

    Google Scholar 

  23. M. Grötschel and M. W. Padberg. Polyhedral theory. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pages 251–305. John Wiley, 1985.

    Google Scholar 

  24. M. Grötschel and W. R. Pulleyblank. Clique tree inequalities and the symmetric travelling salesman problem. Mathematics of Operations Research, 11:537–569, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. L. Hammer, E. Johnson, and U. N. Peled. Facets of regular 0–1 polytopes. Mathematical Programming, 8:179–206, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. E. Hartmann. Cutting planes and the complexity of the integer hull. Technical Report 819, School of Operations Research and Industrial Engineering, Cornell University, September 1988.

    Google Scholar 

  28. M. E. Hartmann. Personal communication, March 1998.

    Google Scholar 

  29. M. E. Hartmann, M. Queyranne, and Y. Wang. On the Chvátal rank of certain inequalities. This volume, 1999.

    Google Scholar 

  30. R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bound for tree-like cutting plane proofs. In Proc. Logic in Computer Science, LICS’94, Paris, 1994.

    Google Scholar 

  31. U. H. Kortenkamp, J. Richter-Gebert, A. Sarangarajan, and G. M. Ziegler. Extremal properties of 0/1-polytopes. Discrete and Computational Geometry, 17:439–448, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  32. D. Naddef. The Hirsch conjecture is true for (0,1)-polytopes. Mathematical Programming, 45:109–110, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  33. M. W. Padberg and M. Grötschel. Polyhedral computations. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pages 307–360. John Wiley, 1985.

    Google Scholar 

  34. P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic, 62:981–988, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  35. W. R. Pulleyblank. Polyhedral combinatorics. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, editors, Optimization, Volume 1 of Handbooks in Operations Research and Management Science, Chapter V, pages 371–446. Elsevier, 1989.

    Google Scholar 

  36. A. Schrijver. On cutting planes. Annals of Discrete Mathematics, 9:291–296, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.

    Google Scholar 

  38. A. S. Schulz. Polytopes and Scheduling. PhD thesis, Technical University of Berlin, Berlin, Germany, 1996.

    MATH  Google Scholar 

  39. A. S. Schulz. A simple proof that the Chvátal rank of polytopes in the 0/1-cube is small. Unpublished manuscript, September 1997.

    Google Scholar 

  40. A. S. Schulz, R. Weismantel, and G. M. Ziegler. An optimization problem is ten problems. In preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisenbrand, F., Schulz, A.S. (1999). Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds) Integer Programming and Combinatorial Optimization. IPCO 1999. Lecture Notes in Computer Science, vol 1610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48777-8_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-48777-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66019-4

  • Online ISBN: 978-3-540-48777-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics