Skip to main content

Production of Multifunctional Organic Acids from Renewable Resources

  • Chapter
  • First Online:
Recent Progress in Bioconversion of Lignocellulosics

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 65))

Abstract

Recently, the microbial production of multifunctional organic acids has received interest due to their increased use in the food industry and their potential as raw materials for the manufacture of biodegradable polymers. Certain species of microorganisms produce significant quantities of organic acids in high yields under specific cultivation conditions from biomass-derived carbohydrates. The accumulation of some acids, such as fumaric, malic and succinic acid, are believed to involve CO2-fixation which gives high yields of products. The application of special fermentation techniques and the methods for downstream processing of products are described. Techniques such as simultaneous fermentation and product recovery and downstream processing are likely to occupy an important role in the reduction of production costs. Finally, some aspects of process design and current industrial production processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooke TF (1990) J Polymer Eng 3:171

    Google Scholar 

  2. Lapinsky ES, Sinclair RG (1986) Chem Eng Prog 82:26

    Google Scholar 

  3. Tsai SP, Coleman RD, Moon SH, Schneider KA, Millard CS (1993) Appl Biochem Biotechnol 39/40:323

    Article  Google Scholar 

  4. Ishizaki A, Osajima K, Nakamura K, Kimura K, Hara T, Ezaki T (1990) J Gen Appl Microbiol 36:1

    Article  CAS  Google Scholar 

  5. Mehaia MA, Cheryan M (1987) Process Biochem 22:185

    CAS  Google Scholar 

  6. Mulligan CN, Safi BF, Groleau D (1991) Biotechnol Bioeng 37:1173

    Article  Google Scholar 

  7. Litchfield JH (1996) Adv Appl Microbiol 42:45

    Article  CAS  Google Scholar 

  8. Yabannavar VM, Wang DIC (1991) Biotechnol Bioeng 37:1095

    Article  CAS  Google Scholar 

  9. Bibal B, Vayssier Y, Goma G, Pareilleux A (1991) Biotechnol Bioeng 37:746

    Article  CAS  Google Scholar 

  10. Moueddeb H, Sanchez J, Bardot C, Fick M (1996) J Membrane Sci 114:59

    Article  CAS  Google Scholar 

  11. Davison BH, Thomson JE (1992) Appl Biochem Biotechnol 34:431

    Article  Google Scholar 

  12. Kaufman EN, Cooper SP, Clement SL, Little MH (1995) Appl Biochem Biotechnol 45/46:605

    Article  Google Scholar 

  13. Evangelista RL, Nikolov ZL (1996) Appl Biochem Biotechnol 57/58:471

    Article  Google Scholar 

  14. Cen P, Tsao GT (1993) Sep Technol 3:58

    Article  CAS  Google Scholar 

  15. Timmer JMK, Kromkamp J, Robbertsen T (1994) J Membrane Sci 92:185

    Article  CAS  Google Scholar 

  16. Wang CJ, Bajpai RK, Iannotti EL (1991) Appl Biochem Biotechnol 28/29:589

    Article  Google Scholar 

  17. Linko YY, Javanainen P (1996) Enzyme Microb Technol 19:118

    Article  CAS  Google Scholar 

  18. Mercier P, Yerushalmi L, Rouleau D, Dochain D (1992) J Chem Tech Biotechnol 55:111

    CAS  Google Scholar 

  19. Cheng P, Mueller RE, Jaeger S, Bajpai R, Iannotti EL (1991) J Ind Microbiol 7:27

    Article  CAS  Google Scholar 

  20. Zhang DX, Cheryan M (1994) Process Biochem 29:145

    Article  Google Scholar 

  21. McCaskey TA, Zhou SD, Britt SN, Strickland R (1994) Appl Biochem Biotechnol 45/46:555

    Article  Google Scholar 

  22. Zhou SD, McCaskey TA, Broder J (1996) Appl Biochem Biotechnol 57/58, 517

    Article  Google Scholar 

  23. Abe S, Takagi M (1991) Biotechnol Bioeng 37:93

    Article  CAS  Google Scholar 

  24. Chen R, Lee YY (1997) Appl Biochem Biotechnol 63/65:435

    Article  Google Scholar 

  25. Yu RC, Hang YD (1989) Biotechnol Lett 11:597

    Article  CAS  Google Scholar 

  26. Yang CW, Lu Z, Tsao GT (1995) Appl Biochem Biotechnol 51/52:57

    Article  Google Scholar 

  27. Soccol CR, Stonoga VJ, Raimbault M (1994) World J Microbiol Biotechnol 10:433

    Article  CAS  Google Scholar 

  28. Rosenberg M, Kristofikova L (1995) Acta Biotechnol 15:367

    Article  CAS  Google Scholar 

  29. Du J, Cao N, Gong CS, Tsao GT (1998) Appl Biochem Biotechnol 70/72:323

    Article  Google Scholar 

  30. Dong XY, Bai S, Sun Y (1996) Biotechnol Lett 18:225

    Article  CAS  Google Scholar 

  31. Hamamci H, Ryu DDY (1994) Appl Biochem Biotechnol 44:125

    Article  CAS  Google Scholar 

  32. Tamada M, Begum, AA, Sadi S (1992) J Ferment Bioeng 74:379

    Article  CAS  Google Scholar 

  33. Lin J, Chen B, Wu J, Cen P (1997) Chinese J Chem Eng 5:49

    Google Scholar 

  34. Soccol CR, Marin B, Raimbault M, Lebeault JM (1994) Appl Microbiol Biotechnol 41:286

    Article  CAS  Google Scholar 

  35. Kubicek CP, Rohr M (1986) CRC Crit Rev Biotechnol 3:331

    Article  CAS  Google Scholar 

  36. Berry DR, Chmiel A, Al Obaidi Z (1977) Citric acid production by Aspergillus niger in genetics and physiology of Aspergillus. In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus. Academic Press, New York, pp 405–426

    Google Scholar 

  37. Kubicek CP (1987) Biochem Soc Symp 54:113

    CAS  Google Scholar 

  38. Mattey M (1992) CRC Crit Rev Biotechnol 12:87

    Article  CAS  Google Scholar 

  39. Kisser M, Kubicek CP, Rohr M (1980) Arch Microbiol 128:26

    Article  CAS  Google Scholar 

  40. Clark DS, Ito K, Horitsu H (1966) Biotechnol Bioeng 8:465

    Article  CAS  Google Scholar 

  41. Horitsu H, Clark DS (1966) Can J Microbiol 12:901

    Article  CAS  Google Scholar 

  42. Clark DS (1962) Can J Microbiol 8:113

    Google Scholar 

  43. Tsao GT, Du J, Cao N, Gong CS, unpublished results

    Google Scholar 

  44. Legisa M, Cimerman A, Sterle M (1981) FEMS Microbiol Lett 11:149

    Article  Google Scholar 

  45. Kubicek CP, Rohr M (1977) Eur J Appl Microbiol 4:167

    Article  CAS  Google Scholar 

  46. Shu P, Johnson MJ (1948) J Bacteriol 56:577

    CAS  Google Scholar 

  47. Mischak H, Kubicek CP, Rohr M (1984) Appl Microbiol Biotechnol 21:27

    Google Scholar 

  48. Mattey M (1977) FEMS Microbiol Lett 2:71

    Article  CAS  Google Scholar 

  49. Kubicek CP, Zehentgruber O, El-kalak H, Rohr M (1980) Eur J Appl Microbiol Biotechnol 9:101

    Article  CAS  Google Scholar 

  50. Kubicek CP, Zehentgruber O, Rohr M (1979) Biotechnol Lett 1:57

    Article  Google Scholar 

  51. Annadurai G, Raju V, Chellapandian M, Krishnan MRV (1996) Bioprocess Eng 16:13

    Article  CAS  Google Scholar 

  52. Lu MY, Maddox, IS, Brooks JD (1998) Process Biochem 33:117

    Article  CAS  Google Scholar 

  53. Saha ML, Takahashi F (1997) J Ferment Bioeng 84:244

    Article  CAS  Google Scholar 

  54. Federici F, Petruccioli M (1997) Ital J Food Sci 9:171

    CAS  Google Scholar 

  55. Foster JW, Waksman SA (1939) J Am Chem Soc 61:127

    Article  CAS  Google Scholar 

  56. Rhodes RA, Lagoda AA, Misenheimer TJ, Smith ML, Anderson RF, Jackson RW (1962) Appl Microbiol 10:9

    CAS  Google Scholar 

  57. Overman SA, Romano AH (1969) Biochem Biophy Res Commun 370:457

    Article  Google Scholar 

  58. Osmani SA, Scrutton MC (1983) Eur J Biochem 133:551

    Article  CAS  Google Scholar 

  59. Osmani SA, Scrutton MC (1985) Eur J Biochem 147:119

    Article  CAS  Google Scholar 

  60. Peleg Y, Battat E, Scrutton MC. Goldberg I (1989) Appl Microbiol Biotechnol 32:334

    Article  CAS  Google Scholar 

  61. Foster JW, Carbon SF, Ruben S, Kamen MD (1941) Proc Natl Acad Sci USA 27:590

    Article  CAS  Google Scholar 

  62. Tsao GT, Liu D, Jiang YH, Yang CW, Sun Y, Yu X, Gong CS (1995) Coupled adsorption and biosynthesis in the production of fumaric acid involving carbon dioxide fixation by fungi. Presentation paper 11 b at the 1995 Annual AICHE Meeting, November

    Google Scholar 

  63. Kenealy W, Zaady E, Du Preez JC, Stieglitz B, Goldberg I (1986) Appl Environ Microbiol 52:128

    CAS  Google Scholar 

  64. Rhodes RA, Moyer AJ, Smith, ML, Kelley SE (1959) Appl Microbiol 7:74

    CAS  Google Scholar 

  65. Chou Y, Domínguez JM, Cao N, Du J, Tsao GT Appl Biochem Biotechnol, in press

    Google Scholar 

  66. Gangl IC, Weigand WA, Keller FA (1990) Appl Biochem Biotechnol 24/25:663

    Article  Google Scholar 

  67. Federici F, Moresi M, Parente E, Petruccioli M, Piccioni P (1994) Ital J Food Sci 6:215

    Google Scholar 

  68. Du J, Cao N, Gong CS, Tsao GT, Yuan N (1997) Appl Biochem Biotechnol 63/65:541

    Article  Google Scholar 

  69. Du J, Chou Y, Tsao GT, unpublished results

    Google Scholar 

  70. Cao N, Du J, Chen CS, Gong CS, Tsao GT (1997) Appl Biochem Biotechnol 63/65:387

    Article  Google Scholar 

  71. Antonie RL (1976) Fixed biological surfaces-wastewater treatment: the rotating biological contactor. CRC Press, Cleveland, Ohio, p 200

    Google Scholar 

  72. Cao N, Du J, Gong CS, Tsao GT (1996) Appl Environ Microbiol 62:2926

    CAS  Google Scholar 

  73. Kautola H, Linko YY (1989) Appl Microbiol Biotechnol 31:448

    Article  CAS  Google Scholar 

  74. Petruccioli M, Angiani E, Federici F (1996) Process Biochem 31:463

    Article  CAS  Google Scholar 

  75. Federici F, Petruccioli M (1997) Ital J Food Sci 9:171

    CAS  Google Scholar 

  76. Moresi M, Parente E, Petruccioli M, Federici F (1991) Appl Microbiol Biotechnol 36:35

    Article  CAS  Google Scholar 

  77. Yamamoto K, Tosa T, Yamashita K, Chibata I (1976) Eur J Appl Microbiol 3:169

    Article  CAS  Google Scholar 

  78. Takata I, Yamamoto K, Tosa T, Chibata I (1976) Enzyme Microb Technol 2:30

    Article  Google Scholar 

  79. Gong CS, Cao N, Sun Y, Tsao GT (1996) Appl Biochem Biotechnol 57/58:481

    Article  Google Scholar 

  80. Alberty RA (1961) Fumarase. In: Boyer PD, Lardy H, Myrback K (eds) The enzyme, vol 5. Academic Press, New York, pp 531–544

    Google Scholar 

  81. Takata I, Yamamoto K, Tosa T, Chibata I (1980) Enzyme Microb Technol 2:30

    Article  CAS  Google Scholar 

  82. Oliveira EA, Costa AAR, Figueiredo ZMA, Carvalho LB (1994) Appl Biochem Biotechnol 47:65

    Article  CAS  Google Scholar 

  83. Neufeld RJ, Peleg Y, Rokem, JS, Pines O, Goldberg I (1991) Enzyme Microbiol Technol 13:991

    Article  CAS  Google Scholar 

  84. Wang X, Gong CS, Tsao GT (1996) Biotechnol Lett 18:1441

    Article  CAS  Google Scholar 

  85. Bercovitz A, Peleg Y, Battat E, Rokem, JS, Goldberg I (1990) Appl Environ Microbiol 56:1594

    CAS  Google Scholar 

  86. Tachibana S (1966) J Ferment Technol 44:129

    CAS  Google Scholar 

  87. Battat E, Peleg Y, Bercovitz A, Rokem JS (1991) Biotechnol Bioeng 37:1108

    Article  CAS  Google Scholar 

  88. Kawagoe M, Hyakumura K, Suye S, Miki K, Naoe K ( 1997) J Ferment Bioeng 84:333

    Article  CAS  Google Scholar 

  89. Takao S, Hotta K (1976) J Ferment Technol 54, 197

    CAS  Google Scholar 

  90. Takao S, Tokota A, Tanida M (1983) J Ferment Technol 61:643

    CAS  Google Scholar 

  91. Peleg Y, Stieglitz B, Golberg I (1988) Appl Microbiol Biotechnol 28:69

    Article  CAS  Google Scholar 

  92. Pines O, Even-Ram, S, Elnathan N, Battat E, Aharonov O, Gibson D, Goldberg I (1996) Appl Microbiol Biotechnol 46:393

    CAS  Google Scholar 

  93. Pines O, Shemesh, S, Battat E, Goldberg I (1997) Appl Microbiol Biotechnol 48:248

    Article  CAS  Google Scholar 

  94. Wang X, Gong CS, Tsao GT (1998) Appl Biochem Biotechnol 70/72:845

    Article  Google Scholar 

  95. Winstrom LO (1978) Kirk-Othmer encyclopedia of chemical technology, vol 21, pp 848–864

    Google Scholar 

  96. Gokarn RR, Eiteman MA, Sridhar J (1997) ACS Symp Ser 666:237

    Article  CAS  Google Scholar 

  97. Nghiem, NP, Davison BN, Suttle BE, Richarson GR (1997) Appl Biochem Biotechnol 63/65:565

    Article  Google Scholar 

  98. Samuelov NS, Lamed R, Lowe S, Zeikus JG (1991) Appl Environ Microbiol 57:3013

    CAS  Google Scholar 

  99. Millard CS, Chao YP, Liao JC, Donnelly MI (1996) Appl Environ Microbiol 62:1805

    Google Scholar 

  100. Van Hellemond JJ, Tielens AGM (1994) Biochem J 304:321

    Google Scholar 

  101. Kaneuchi C, Seki M, Komagata K (1988) Appl Environ Microbiol 54:3053

    CAS  Google Scholar 

  102. Czelovsky J, Wolf, G, Mammes WP (1992) Appl Environ Microbiol 37:94

    Google Scholar 

  103. Goldberg I, Lonberg-Holm K, Bagley EA, Stieglitz B (1983) Appl Environ Microbiol 45:1838

    CAS  Google Scholar 

  104. Wang X, Gong CS, Tsao GT (1998) Appl Biochem Biotechnol 70/72:919

    Article  Google Scholar 

  105. Takao S, Hotta K (1973) J Ferment Technol 51:19

    CAS  Google Scholar 

  106. Luskin LS (1974) Acidic monomers, 111. Itaconic acid. In: Yocum RH, Nyquist EB (eds) Functional monomers, their preparation, polymerization and application, vol 1. Marcel Dekker, New York, p 465

    Google Scholar 

  107. Kinoshita K (1929) J Chem Soc Japan 50:583

    CAS  Google Scholar 

  108. Tabuchi T, Sugisawa T, Ishidori T, Nakahara T, Sugiyama J (1981) Agric Biol Chem 45:475

    CAS  Google Scholar 

  109. Jaklitsch WM, Kubicek CP, Scrutton MC (1991) J Gen Microbiol 137:533

    CAS  Google Scholar 

  110. Bonnarme P, Gillet B, Sepulchre AM, Role C, Beloeil JC, Ducrocq C (1995) J Bacteriol 177:3573

    CAS  Google Scholar 

  111. Li G, Yu G, Shao K, Cong W, Cai Z, Yang S (1997) Itaconic acid production in an airlift loop bioreactor. In: The 4th Asia-Pacific Biochemical Engineering Conference, pp 783–785

    Google Scholar 

  112. Gyamerah, M ( 1995) Appl Microbiol Biotechnol 44:20

    Article  Google Scholar 

  113. Park YS, Ohta N, Okabe M (1993) Biotechnol Lett 15:583

    Article  CAS  Google Scholar 

  114. Gyamerah M (1995) Appl Microbiol Biotechnol 44:356

    Article  CAS  Google Scholar 

  115. Yahiro K, Takahama T, Jai S, Park Y, Okabe M (1997) Biotechnol Lett 19:619

    Article  CAS  Google Scholar 

  116. Okabe M, Ohta N, Park YS (1993) J Ferment Bioeng 76:117

    Article  CAS  Google Scholar 

  117. Kirimura K, Sato T, Nakanishi N, Terada M, Usami S (1997) Appl Microbiol Biotechnol 47:127

    Article  CAS  Google Scholar 

  118. Vassilev N, Kautola H, Linko YY ( 1992) Biotechnol Lett 14:201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsao, G.T., Cao, N.J., Du, J., Gong, C.S. (1999). Production of Multifunctional Organic Acids from Renewable Resources. In: Tsao, G.T., et al. Recent Progress in Bioconversion of Lignocellulosics. Advances in Biochemical Engineering/Biotechnology, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49194-5_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-49194-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65577-0

  • Online ISBN: 978-3-540-49194-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics