Skip to main content

The Edge-Disjoint Paths Problem is NP-Complete for Partial k-Trees

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1533))

Included in the following conference series:

Abstract

Many combinatorial problems are NP-complete for general graphs, but are not NP-complete for partial k-trees (graphs of treewidth bounded by a constant k) and can be efficiently solved in polynomial time or mostly in linear time for partial k-trees. On the other hand, very few problems are known to be NP-complete for partial k-trees with bounded k. These include the subgraph isomorphism problem and the bandwidth problem. However, all these problems are NP-complete even for ordinary trees or forests. In this paper we show that the edge-disjoint paths problem is NP-complete for partial k-trees with some bounded k, say k = 3, although the problem is trivially solvable for trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph reduction. Journal of the Association for Computing Machinery, 40(5):1134–1164, 1993.

    MATH  MathSciNet  Google Scholar 

  2. S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. Journal of Algorithms, 12(2):308–340, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of lineartime algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica, 7:555–581, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  5. S.A. Cook. The complexity of theorem-proving procedures. In Proc. of 3th Symp. Theory of Comp. Association for Computing Machinery, pages 151–158, 1971.

    Google Scholar 

  6. B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation, 85:12–75, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Dessmark, A. Lingas, and A. Proskurowski. Faster algorithms for subgraph isomorphism of k-connected partial k-trees. In Proc. of the Fourth Europian Symposium on Algorithms, Lect. Notes in Computer Science, Springer-Verlag, volume 1136, pages 501–513, 1996.

    MathSciNet  Google Scholar 

  8. A. Frank. Edge-disjoint paths in planar graphs. Journal of Combinatorial Theory, Series B, 39:164–178, 1985.

    Article  MATH  Google Scholar 

  9. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York, 1979.

    MATH  Google Scholar 

  10. A. Gupta and N. Nishimura. The complexity of subgraph isomorphism for classes of partial k-trees. Theoretical Computer Science, 164:287–297, 1996

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Garg, V.V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica, 18:3–20, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Kleinberg and É. Tardos. Approximations for the disjoint paths problem in high-diameter planar networks. In Proc. ACM Symp. Theory of Computing, pages 26–35, 1995

    Google Scholar 

  13. K. Matsumoto, T. Nishizeki, and N. Saito. An efficient algorithm for finding multicommodity flows in planar networks. SIAM J. Comput., 14(2):289–302, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Middendorf and F. Pfeiffer. On the complexity of disjoint paths problem. Combinatorica, 13(1):97–107, 1993

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Matoušek and R. Thomas. On the complexity of finding iso-and other morphisms for partial k-trees. Discrete Mathematics, 108:343–364, 1992

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Robertson and P.D. Seymour. Graph minors II. Algorithmic aspects of treewidth. Journal of Algorithms, 7:309–322, 1986

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Robertson and P.D. Seymour. Graph minors XIII. The disjoint paths problem. J. of Combin. Theory, Series B, 63(1):65–110, 1995

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Ripphausen-Lipa, D. Wagner, and K. Weihe. Efficient algorithms for disjoint paths in planar graphs. DIMACS Series in Discrete Math. and Theoretical Computer Science, 20:295–354, 1995

    MathSciNet  Google Scholar 

  19. P. Scheffler. A practial linear time algorithm for disjoint paths in graphs with bound tree-width. Technical Report 396, Dept. Mathematics, Tchnische Universit ät Berlin, 1994

    Google Scholar 

  20. M. Syslo. NP-complete problems on some tree-structured graphs: a review. In Proc. WG’83 International Workshop on Graph Theoretic Concepts in Computer Science, pages 478–489, Univ. Verlag Rudolf Trauner, Linz, West Germany, 1983.

    Google Scholar 

  21. H. Suzuki, A. Ishiguro, and T. Nishizeki. Edge-disjoint paths in a grid bounded by two nested rectangles. Discrete Applied Mathematics, 27:157–178, 1990

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Suzuki, T. Nishizeki, and N. Saito. Algorithms for multicommodity flows in planar graphs. Algorithmica, 4:471–501, 1989

    Article  MATH  MathSciNet  Google Scholar 

  23. J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discrete Math., 10:529–550, 1997

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Vygen. NP-completeness of some edge-disjoint paths problems. Discrete Appl. Math., 61:83–90, 1995

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Wagner and K. Weihe. A linear-time algorithm for edge-disjoint paths in planar graphs. Combinatorica., 15:135–150, 1995

    Article  MATH  MathSciNet  Google Scholar 

  26. X. Zhou, S. Nakano, and T. Nishizeki. Edge-coloring partial k-trees. Journal of Algorithms, 21:598–617, 1996

    Article  MATH  MathSciNet  Google Scholar 

  27. X. Zhou, S. Tamura, and T. Nishizeki. Finding edge-disjoint paths in partial k-trees. In Proc. of the Seventh International Symposium on Algorithms and Computation, Lect. Notes in Computer Science, Springer-Verlag, volume 1178, pages 203–212, 1996

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, X., Nishizeki, T. (1998). The Edge-Disjoint Paths Problem is NP-Complete for Partial k-Trees. In: Chwa, KY., Ibarra, O.H. (eds) Algorithms and Computation. ISAAC 1998. Lecture Notes in Computer Science, vol 1533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49381-6_44

Download citation

  • DOI: https://doi.org/10.1007/3-540-49381-6_44

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65385-1

  • Online ISBN: 978-3-540-49381-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics