Skip to main content

Computer Vision Interaction for Virtual Reality

  • Conference paper
  • First Online:
Progress in Artificial Intelligence — IBERAMIA 98 (IBERAMIA 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1484))

Included in the following conference series:

Abstract

As virtual reality evolves towards more natural interfaces, new contact less interaction based on gesture recognition is unfolding. This interaction is supported on geometric, dynamic and cognitive modelling of gestures. As well as other branches of artificial intelligence, computer vision plays an important role in this modelling.

The purpose of this paper is to describe how computer vision is helping to develop virtual reality and present some interfaces developed in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliaga, D.G. (1997). “Virtual objects in the real world”. Communications of the ACM, Vol. 40, No. 3, pp. 49–54. 264, 265

    Article  Google Scholar 

  2. Baecker, R.M. and Buxton, W.A.S. (1987). “A historical and intellectual perspective of human-computer interaction”. In Readings in Human-Computer Interaction, a multidisciplinary approach, Baecker, R.M. and Buxton, W.A.S. (Eds.), Morgan Kaufmann. 262

    Google Scholar 

  3. Barfield, W. and Furnes, T.A. (1995). Virtual Environments and Advanced Interface Design. Oxford University Press. 262, 263

    Google Scholar 

  4. Basu, S., Essa, I. and Pentland, A. (1996). “Motion regularization for model-based head tracking”. MIT Media Laboratory Perceptual Computing Section, Technical Report No. 362. 264, 268

    Google Scholar 

  5. Baumberg, A.M. and Hogg, D.C. (1993). “Learning flexible models from’ image sequences”. Report 93.36, Research Report Series, School of Computer Studies, University of Leeds, U.K. 264

    Google Scholar 

  6. Blake, A. and A. Yuille (Eds.). (1992). Active Vision, MIT Press. 265

    Google Scholar 

  7. Bolt, R.A. (1985). “Conversing with computers”. Technology Review, 88(2), 35–43. 262

    Google Scholar 

  8. Brown, C.M. and Terzopoulos (Eds.) (1994). Real-time Computer Vision. 263, 265

    Google Scholar 

  9. Buxton, H. (1997). “Visual interpretation and understanding”. Cognitive Science Research Paper 452, School of Cognitive and Computing Sciences, University of Sussex, U.K. 263

    Google Scholar 

  10. Cipolla, R., Okamoto, Y. and Kuno, Y. (1993). “Robust structure from motion using motion parallax”. Proceedings of the International Conference on Computer Vision, IEEE Press. 264, 267

    Google Scholar 

  11. Faugeras, O. (1993). Three-Dimensional computer vision, a geometric viewpoint. MIT Press.

    Google Scholar 

  12. Gonzalez, R.C. and R.E. Woods. (1992). Digital Image Processing (3rd ed.), Addison-Wesley. 267, 268

    Google Scholar 

  13. Grimson, W.E.L. (1995). “Medical applications of image understanding”. IEEE Expert, Intelligent systems and their applications, Vol. 10, No. 5, pp. 18–28. 264, 265

    Google Scholar 

  14. Hayward, T. (1993). Adventures in Virtual Reality. QUE corp. 262

    Google Scholar 

  15. Heap, T. and Samaria, F. (1995). “Real-time hand tracking and gesture recognition using smart snakes”. Technical Report, Olivetti Research Limited, U.K. 264, 267

    Google Scholar 

  16. Hubel, D.H. (1988). Eye, Brain and Vision, Scientific American Library 263

    Google Scholar 

  17. Lam, K.M. and Yang, H. (1996). “Locating and extracting the eye in human face images”. Pattern Recognition, Vol. 29, No. 5, pp. 771–779. 264, 266

    Article  Google Scholar 

  18. Maybury, M.T., (Ed.). (1993). Intelligent Multimedia Interfaces. MIT Press. 262

    Google Scholar 

  19. Mundy, J.L. and Zisserman, A. (Eds.). (1992). Geometric Invariance in Machine Vision. MIT Press.

    Google Scholar 

  20. Natonek, E., Zimmerman, T., Fluckiger, L, “Model based vision as feedback for virtual reality robotics environments”. Virtual Reality, Annual International Symposium’ 95, IEEE 264, 265

    Google Scholar 

  21. Ohzu, H. and Habara, K. (1996). “Behind the scenes of virtual reality: vision and motion”. Proceedings of the IEEE, Vol. 84, No. 5, pp. 782–798.

    Article  Google Scholar 

  22. Page, I. (1988). “The disputer: a dual-paradigm parallel processor for graphics and vision”. In Page, I. (Ed.), Parallel Architectures for Computer Vision, Oxford University Press. 263

    Google Scholar 

  23. Pentland, A.P. (1996). “Smart rooms”. Scientific American, April 1996, pp. 54–62. 264, 265

    Google Scholar 

  24. Peña, J., Rios, H.V., y Barradas, P. (1997). “Interacción con escenarios 3D por medio de ademanes y movimientos oculares”, Memorias del Congreso Computación Visual 97, pp. 213–219, Facultad de Ciencias, UNAM, México. 264, 267, 268

    Google Scholar 

  25. Rehg, J.M. and Kanade, T. (1993). “DigitEyes: vision-based human hand tracking”, School of Computer Science, Carnegie Mellon University, Technical report number: CMU-CS-93-220. 264, 267

    Google Scholar 

  26. Rekimoto, J. (1995). “A vision-based head tracker for fish tank virtual reality” Virtual Reality, Annual International Symposium’ 95, IEEE 264, 268

    Google Scholar 

  27. Rios, H.V. y Barradas, P.D. (1996). “Interacción Hombre-Máquina por medio de movimientos oculares”. Memorias del V Congreso Iberoamericano de Inteligencia Artificial, pp. 492–501. 264, 266, 267

    Google Scholar 

  28. Rios, H.V., Figueroa, J.M. y Barradas, P.D. (1997). “Visión por computadora en interfaces Hombre-Máquina”, Soluciones Avanzadas, No. 42, febrero 1997, pp. 51–56. 267

    Google Scholar 

  29. Rothe, I., Suesse, H. and Voss, K. (1996). “The method of normalization to determine invariants”, Pattern Analysis and Machine Intelligence, Vol. 18, No. 4, pp. 366–376.

    Article  Google Scholar 

  30. Winter, S. y Rudomin, I. (1997). “Synthetic computer vision for autonomous agents in distributed partitioned environments”. Memorias del Congreso Computación Visual 97, pp.157–166, Facultad de Ciencias, Universidad Nacional Autónoma de México. 264

    Google Scholar 

  31. Schwartz, E.I. (1995). “A face of one’sown”. Discover the world of Science, vol. 16, no.2, December 1995, pp. 78–87. 264

    Google Scholar 

  32. Starner, T. and Pentland, A. (1996). “Real-time American sign language recognition from video using hidden Markov models”. MIT Media Laboratory Perceptual Computing Section, Technical Report No. 375. 264

    Google Scholar 

  33. Terzopoulos, D., Witkin, A. & Kass, M., “Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion”, Artificial Intelligence, Vol. 36 (1988), pp. 91–123. 263, 265

    Article  MATH  Google Scholar 

  34. Terzopoulos D. (1991). “Visual Modelling”, Proceedings of the British Machine Vision Conference, BMVA. 263, 265

    Google Scholar 

  35. Towersoft. (1995). DIAS, Dialog and Programming System for Digital Image Analysis. User reference manual, version 4.0, Towersoft, Berlin, Germany. 268

    Google Scholar 

  36. Vince, J. (1995). Virtual Reality Systems. Addison-Wesley. 262, 263

    Google Scholar 

  37. Voss, K. and Suesse, H. (1997). “Invariant fitting of planar objects by primitives”. Pattern Analysis and Machine Intelligence, Vol. 19, No. 1, pp. 80–84. 268

    Article  Google Scholar 

  38. Voss, K. (1993). Discrete Images, Objects and Funciones in Z n. Algorithms and Combinatorics 11, Springer-Verlag.

    Google Scholar 

  39. Voss, K., Ríos, H.V. and Peña, J. (1998). “Head tracking by glasses detection”. Computación y Sistemas, Revista Iberoamericana de Computación, No. 3, pp. 170–178, Centro de Investigación en Computación, Instituto Politécnico Nacional, México. 264, 268

    Google Scholar 

  40. Wildes, R.P. (1997). “Iris recognition: an emerging biometric technology”. Proceedings of the IEEE, Vol. 85, No. 9, pp. 1348–1364. 264

    Article  Google Scholar 

  41. Young, D., Tunley, H. and Samuels, R. (1995). “Specialized Hough transform and active contour methods for real-time eye tracking”. Cognitive Science Research Paper, No. 386, University of Sussex, England, U.K. 264, 266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ríos Figueroa, H.V., Acevedo, J.P. (1998). Computer Vision Interaction for Virtual Reality. In: Coelho, H. (eds) Progress in Artificial Intelligence — IBERAMIA 98. IBERAMIA 1998. Lecture Notes in Computer Science(), vol 1484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49795-1_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-49795-1_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64992-2

  • Online ISBN: 978-3-540-49795-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics