Skip to main content

Thematic map modeling

  • Conference paper
  • First Online:
Design and Implementation of Large Spatial Databases (SSD 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 409))

Included in the following conference series:

Abstract

We study here how to provide the designer of geographic databases with a database query language extensible and customizable. The model presented here is a first step toward a high level spatial query language adapted to the manipulation of thematic maps.

For this, we take as an example a toy application on thematic maps, and show by using a complex objects algebra that application dependent geometric operations can be expressed through an extension of the replace operator of [AB88].

This work was partially supported by a grant from the french PRC BD 3, and by the BRA ESPRIT W. G. Basic GOODS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abiteboul and C. Beeri. On the Power of Languages for the Manipulation of Complex Objects. Technical Report 846, INRIA, May 1988.

    Google Scholar 

  2. S. Abiteboul and S. Grumbach. COL: A Logic-Based Language for Complex Objects. Technical Report 714, INRIA, Septembre 1987.

    Google Scholar 

  3. R. Barrera and A. Buchmann. Schema definition and query language for a geographical database system. In Hot Springs, editor, IEEE Computer Architecture for Pattern Analysis and Image Database Management, New York, Novembre 1981.

    Google Scholar 

  4. F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman, C. Lécluse, P. Pfeffer, P. Richard, and F. Velez. The Design and Implementation of O 2, an Object-Oriented Database System. Technical Report 20, GIP Altair, April 1988.

    Google Scholar 

  5. F. Bancilhon, S. Cluet, and C. Delobel. Query Languages for Object-Oriented Database Systems: Analysis and a Proposal. Technical Report, GIP Altair (to appear), 1989.

    Google Scholar 

  6. F. Bancilhon and S. Khoshafian. A calculus for complex objects. In proc. ACM SIGACT-SIGMOD, Symp. on Principles of Database Systems, 1986.

    Google Scholar 

  7. N.S. Chang and K.S. Fu. A relational database system for images. In Chang and Fu, editors, Pictorial Information Systems, 288–321, Springer Verlag, 1980.

    Google Scholar 

  8. A.F Cardenas and T. Joseph. Picquery: a high level query language for pictorial database management. IEEE Transactions on Software Engineering, 14(5): pages 630–638, May 1988.

    Article  Google Scholar 

  9. S.K. Chang and T.L. Kunii. Pictorial database systems. IEEE Transactions on Computer, November 1981.

    Google Scholar 

  10. B. David. Le modèle Spatiarel. In Quatrièmes Journées Bases de Données Avancées (BD3), pages 73–93, Bénodet, May 1988.

    Google Scholar 

  11. A. Frank. Map query: data base query language for retrieval of geometric data and their graphical representation. Computer Graphics, 16, 1982.

    Google Scholar 

  12. A. U. Frank. Requirements for database systems suitable to manage large spatial databases. In First International Symposium on Spatial Data Handling, pages 38–60, Zurich, 1984.

    Google Scholar 

  13. G. Gardarin, J.P. Cheiney, G. Kiernan, D. Pastre, and H. Stora. Managing complex objects in an extensible relational DBMS. Technical Report, INRIA, March 1989.

    Google Scholar 

  14. R.H. Guting. Geo-relational algebra: a model and query language for geometric database systems. In Conference on Extending Database Technology (EDBT '88), pages 506–527, Venice, March 1988.

    Google Scholar 

  15. R. Hull. A survey of theoretical research on typed complex database objects. In J. Paredaens, editor, Databases, pages 193–256, Academic Press (London), 1987.

    Google Scholar 

  16. R. Hull and C.K. Yap. The Format model: a theory of database organization. ACM, 31(3), 1984.

    Google Scholar 

  17. W. Kim et al. Integrating an object-oriented programming system with a database system. In Proc, 2nd Intl. Conf. on Object-Oriented Programming Systems, Languages and Applications, San Diego, Septembre 1988.

    Google Scholar 

  18. W. Kim et al. Features on the ORION object-oriented database system. In W. Kim and F. Lochovsky, editors, Object-Oriented Concepts, Applications and Databases, Addison-Wesley, 1989.

    Google Scholar 

  19. G.M. Kuper and M.Y. Vardi. On the expressive power of the logical data model (extended abstract). In proc. ACM SIGACT-SIGMOD, Int. Conf. on the Management of Data, 1985.

    Google Scholar 

  20. R.A. Lorie and A. Meier. Using a relational DBMS for geographical databases. In Geo-Processing, pages 243–257, 1984.

    Google Scholar 

  21. C. Lécluse and P. Richard. Modeling complex structures. In Object Oriented Database Systems, PODS, Philadelphia, April 1989.

    Google Scholar 

  22. C. Lécluse, P. Richard, and F. Velez. O 2, an object-oriented data model. In Conference on Extending Database Technology (EDBT '88), pages 556–563, Venice, March 1988.

    Google Scholar 

  23. F. Manola, J. Orenstein, and U. Dayal. Geographical information processing in Probe database system. In International Symposium on Computer Assisted Cartography, Baltimore, 1987.

    Google Scholar 

  24. J. A. Orenstein and F. A. Manola. Toward a general spatial data model for an object-oriented data model. In VLDB, 1986.

    Google Scholar 

  25. J. A. Orenstein. Spatial query processing in an object-oriented database system. In Proc. of the ACM SIGMOD, pages 326–336, 1986.

    Google Scholar 

  26. N. Roussopoulos, C. Faloutsos, and T. Sellis. An efficient pictorial database system for PSQL. IEEE Transactions on Software Engineering, 14(5): pages 639–650, May 1988.

    Article  Google Scholar 

  27. H. Samet. The quadtree and related hierarchical data structures. Computing Surveys, 16(2), June 1984.

    Google Scholar 

  28. R. Sack-Davis, K.J. McDonell, and B.C. Ooi. GEOQL — a query language for geographic information system. In Australian and New Zeland Association for the Advancement of Science Congress, Townsville, Australia, August 1987.

    Google Scholar 

  29. T. R. Smith, S. Menon, J.L. Star, and J.E. Estes. Requirements and principles for the implementation and construction of large-scale geographic information systems. International Journal of Geographical Information Systems, 1(1): pages 13–31, 1987.

    Google Scholar 

  30. M. Stonebraker and L. A. Rowe. The design of POSTGRES. In proc. ACM SIGACT-SIGMOD, pages 340–355, 1986.

    Google Scholar 

  31. M. Stonebraker, B. Rubenstein, and A. Guttman. Application of abstract data types and abstract indices to cad data bases. In Proc. of the ACM/IEEE Conf. on Engineering Design Applications, pages 107–113, San Jose, 1983.

    Google Scholar 

  32. H. J. Schek and W. Waterfeld. A database kernel system for geoscientific applications. In Proc. of the Int. Symposium on Spatial Data Handling, Seattle, Washington, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alejandro P. Buchmann Oliver Günther Terence R. Smith Yuan-Fang Wang

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scholl, M., Voisard, A. (1990). Thematic map modeling. In: Buchmann, A.P., Günther, O., Smith, T.R., Wang, YF. (eds) Design and Implementation of Large Spatial Databases. SSD 1989. Lecture Notes in Computer Science, vol 409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52208-5_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-52208-5_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52208-9

  • Online ISBN: 978-3-540-46924-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics