Skip to main content

A new simple linear algorithm to recognize interval graphs

  • Conference paper
  • First Online:
Computational Geometry-Methods, Algorithms and Applications (CG 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 553))

Included in the following conference series:

Abstract

The first linear algorithm for recognizing interval graphs was presented by Booth and Leuker[4] in 1976. The first phase of this algorithm finds a perfect elimination scheme and determines all maximal cliques A 1,..., A s , of a given graph using the fact that interval graphs are a proper subclass of chordal graphs. This part is based on a lexicographic breadth first search (for short lexBFS) which is also used in other areas such as scheduling problems [18][5]. In the second phase the PQ-tree data structure is used to get a representation of all possible consecutive arrangements of all maximal cliques A 1,..., A s . Korte and Möhring[13], 1989, improved this algorithm by a more adaptive version of PQ-trees, so called MPQ-trees, for the second phase. In this paper we show a new solution of the second phase by repeated use of lexBFS, which produces a linear arrangement of the maximal cliques A 1,..., A s , if there is one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Benzer. On the topology of the genetic fine structure. Proce. Nat. Acad. Sci. U.S.A. 45, pages 1607–1620, 1959.

    Google Scholar 

  2. A. A. Bertossi. Total domination in interval graphs. Information Processing Letters, 23:131–134, 1986.

    Google Scholar 

  3. A. A. Bertossi and M. A. Bonuccelli. Hamiltonian circuits in interval graph generalizations. Information Processing Letters, 23:195–200, 1986.

    Google Scholar 

  4. K. S. Booth and G. Leuker. Testing for the consecutive ones property, interval graphs and graph planarity using pq-tree algorithms. Journal of Computer and System Science, 13:335–379, 1976.

    Google Scholar 

  5. E. G. Coffman and R. L. Graham. Optimal scheduling for two-processor systems. Acta Informatica, 1:200–213, 1972.

    Google Scholar 

  6. N. Deo, M. S. Krishamoorty, and M. A. Langston. Exact and approximate solutions for the gate matrix layout problem. In IEEE Trans. Computer Aided Design, pages 79–84, 1987.

    Google Scholar 

  7. G. A. Dirac. On rigid circuit graphs. Abh. Mathe. Sem. Univ. Hamburg, 25:71–76, 1961.

    Google Scholar 

  8. D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific J. Math., 15:835–855, 1965.

    Google Scholar 

  9. F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques and maximum independent set of chordal graph. SIAM J. Comput., 1:180–187, 1972.

    Google Scholar 

  10. P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of interval graphs. Canad. J. Math., 16:539–548, 1964.

    Google Scholar 

  11. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, London, 1980.

    Google Scholar 

  12. G. Hajós. Über eine Art von Graphen. Internationale Mathematische Nachrichten, 11, 1957. Problem 65.

    Google Scholar 

  13. N. Korte and R. H. Möhring. An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput., 18:68–81, 1989.

    Google Scholar 

  14. C. G. Lekkerkerker and J. C. Boland. Representation of a finite graph by a line of intervals on the real line. Fundamenta Mathemticae, 51:45–64, 1962.

    Google Scholar 

  15. M. Mende. Implementierung von PQ-Bäumen. Diplomarbeit am Institut für Theoretische Informatik (ETH-Zürich), 1991.

    Google Scholar 

  16. F. S. Roberts. Graph Theory and Its Application to Problems of Society. Society for Industrial and Applied Mathematics, Philadelphia, 1978.

    Google Scholar 

  17. D. J. Rose, R. E. Tarjan, and G. S. Leuker. Algoritmic aspects of vertex elimination on graphs. SIAM J. Comput., 5:266–283, 1976.

    Google Scholar 

  18. R. Sethi. Scheduling graphs on two processors. SIAM J. Comput., 5:73–82, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Bieri H. Noltemeier

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simon, K. (1991). A new simple linear algorithm to recognize interval graphs. In: Bieri, H., Noltemeier, H. (eds) Computational Geometry-Methods, Algorithms and Applications. CG 1991. Lecture Notes in Computer Science, vol 553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54891-2_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-54891-2_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54891-1

  • Online ISBN: 978-3-540-46459-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics