Skip to main content

Second order logic and the weak exponential hierarchies

  • Invited Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1995 (MFCS 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 969))

Abstract

Second order logic over finite structures is well-known to capture the levels of the polynomial hierarchy PH. Recently, it has been shown that Θ 1 k — the first order closure of second order Σ 1 m — captures the class Θ P k = \(L^{\Sigma _k^P }\), a natural intermediate class of the polynomial hierarchy [12].

In this paper we show that with respect to expression complexity, second order logic characterizes the levels of the weak exponential hierarchy EH. Moreover, we extend these results to intermediate classes P k in EH which correspond to the Θ P k classes in PH.

To this end, in extending previous results, we show completeness under projection translations of certain quantified propositional formula languages for Θ P k . Those, as well as quantified Boolean formulas are applied to improved complexity upgrade techniques based on the ”succinct input” paradigm.

Thus, we obtain a uniform treatment for obtaining expression complexity results for a large number of natural languages. We exhibit examples from database theory and nonmonotonic reasoning. In particular, we investigate the expression complexity of first order logic with Henkin quantifiers and default logic.

Short abridged version, omitting several proofs. The full paper [13] is available from the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L.Balcázar, J.Diaz, J.Gabarro: Structural Complexity I. Springer Verlag, 1988.

    Google Scholar 

  2. A.Lozano, J.L.Balcázar. The Complexity of Graph Problems for Succinctly Represented Graphs. In: G.Goos,J.Hartmanis, eds., Graph-Theoretic Concepts in Computer Science, LNCS 411:277–286, Springer-Verlag, 1989.

    Google Scholar 

  3. J.L.Balcázar and A.Lozano and J.Torán. The Complexity of Algorithmic Problems on Succinct Instances. In R. Baeta-Yates and U. Manber, editors, Computer Science, pp. 351–377, Plenum Press, New York, 1992.

    Google Scholar 

  4. D.A.Barrington, N.Immerman, and H.Straubing. On Uniformity within NC 1. Journal of Computer and System Sciences, 41, 274–306, 1990.

    Article  Google Scholar 

  5. A.Blass, Y. Gurevich. Henkin Quantifiers and Complete Problems. Annals of Pure and Applied Logic, 32(1986), 1–16.

    Google Scholar 

  6. M.Cadoli, T.Eiter, G.Gottlob. Using Default Logic as a Query Language. Proceedings (KR-94), pp.99–108.

    Google Scholar 

  7. E.Dahlhaus. Reductions to NP-complete Problems by Interpretations. Lecture Notes in Computer Science 171 (1984), 357–365.

    Google Scholar 

  8. T.Eiter and G.Gottlob and H.Mannila. Adding Disjunction to Datalog. Proceedings ACM PODS-94, May 1994, pp. 267–278.

    Google Scholar 

  9. H.Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

    Google Scholar 

  10. R.Fagin. Generalized First-Order Spectra and Polynomial-Time Recognizable Sets. In R. M. Karp editor Complexity of Computation, pp. 43–74, 1974.

    Google Scholar 

  11. G.Gottlob. Complexity Results for Nonmonotonic Logics. J.Logic Computation, Vol. 2 No.3, pp. 397–425, 1992.

    Google Scholar 

  12. G.Gottlob. Relativized Logspace and Generalized Quantifiers over Finite Structures. Available as Technical Report CD-TR/95/76. Extended Abstract to appear in Proceedings of the 10th IEEE Symposium on Logic in Computer Science 1995.

    Google Scholar 

  13. G.Gottlob, N.Leone, H.Veith. Second Order Logic and the Weak Exponential Hierarchies. Technical Report TR 95–80 Christian Doppler Lab for Expert Systems, Information Systems Department, TU Vienna.

    Google Scholar 

  14. J.Hartmanis, R.E.Stearns. On the computational complexity of algorithms. Trans.Amer.Math.Soc.117 (1965), pp. 285–306.

    Google Scholar 

  15. J.Hartmanis, N.Immerman, and V.Sewelson. Sparse Sets in NP-P: EXPTIME versus NEXPTIME. Information and Control, 65:159–181, 1985.

    Article  Google Scholar 

  16. J.Hartmanis and Y.Yesha. Computation Times of NP Sets of Different Densities. Theoretical Computer Science, 34:17–32, 1984.

    Article  Google Scholar 

  17. Lane A.Hemachandra. The Strong Exponential Hierarchy Collapses Journal of Computer and System Sciences, 39:299–322, 1989.

    Article  Google Scholar 

  18. L.Henkin. Some remarks on infinitely long formulas. Proceedings of the Symposium on the Foundations of Mathematics, Warsaw, 1959, pp.167–183.

    Google Scholar 

  19. J.Hintikka. Quantifiers in Logic and Quantifiers in Natural Languages. In S.Körner, editor, Philosophy of Logic, Basil Blackwell, Oxford.

    Google Scholar 

  20. N.Immerman. Languages that Capture Complexity Classes. SIAM J. Computation, 16(4):760–778, 1987.

    Google Scholar 

  21. D.S.Johnson. A Catalog of Complexity Classes. In van Leeuwen, ed., Handbook of Theoretical Computer Science, pp.67–162, Elsevier 1990.

    Google Scholar 

  22. P.G.Kolaitis and C.H.Papadimitriou. Why Not Negation by Fixpoint? Journal of Computer and System Sciences, 43, 125–144(1991).

    Google Scholar 

  23. R.E.Ladner, N.E.Lynch. Relativizations about Questions of logspace Computability. J.Comp.Sys.Sci. 10(1976), pp. 19–32.

    Google Scholar 

  24. C.H.Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  25. C.H. Papadimitriou and M. Yannakakis, A Note on Succinct Representations of Graphs, Information and Computation, 71:181–185, 1985.

    Google Scholar 

  26. C.S.Peirce. Abduction and Induction. In J.Buchler, editor, Philosophical Writings of Peirce, chapter 11. Dover, New York, 1955.

    Google Scholar 

  27. R.Reiter. A Logic for Default Reasoning. Artifical Intelligence, 13:81–132, 1980.

    Google Scholar 

  28. A. Selman. Proc. 1st. Structure in Complexity Theory Conference, LNCS 223, Springer-Verlag, New York/Berlin, June 1986.

    Google Scholar 

  29. I.A. Stewart. Complete Problems Involving Boolean Labelled Structures and Projection Transactions. J.Logic Computation, 1(6):861–882, 1991.

    Google Scholar 

  30. L.J.Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, 3:1–22, 1977.

    Article  Google Scholar 

  31. J.Väänänen. Remarks on generalized quantifiers and second order logics. Prace Naukowe Inst. Mat. Politech. Wroclawski ser. ion. (1977), 117–123.

    Google Scholar 

  32. M.Vardi. Complexity of Relational Query Languages. In Proceedings 14th STOC, pp. 137–146, 1982.

    Google Scholar 

  33. H.Veith. Logical Reducibilities in Finite Model Theory. Master's Thesis, Technical University of Vienna, Vienna, 1994.

    Google Scholar 

  34. K.Wagner. Bounded Query Classes. SIAM J.Comput., 19(5):833–846, 1990.

    Google Scholar 

  35. W.Walkoe. Finite partially ordered quantification. JSL 35(1970), 535–550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jiří Wiedermann Petr Hájek

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gottlob, G., Leone, N., Veith, H. (1995). Second order logic and the weak exponential hierarchies. In: Wiedermann, J., Hájek, P. (eds) Mathematical Foundations of Computer Science 1995. MFCS 1995. Lecture Notes in Computer Science, vol 969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60246-1_113

Download citation

  • DOI: https://doi.org/10.1007/3-540-60246-1_113

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60246-0

  • Online ISBN: 978-3-540-44768-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics