Skip to main content

A polynomial-time algorithm for near-perfect phylogeny

  • Session 16: Algorithms II
  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1099))

Included in the following conference series:

Abstract

We define a parameterized version of the Steiner tree problem in phylogeny where the parameter measures the amount by which a phylogeny differs from “perfection.” This problem is shown to be solvable in polynomial time for any fixed value of the parameter.

Supported in part by the National Science Foundation under grants CCR-9211262 and CCR-9520946.

Supported by the grants from NFR and TFR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Agarwala, D. Fernández-Baca, and G. Slutzki. Fast algorithms for inferring evolutionary trees. To appear in Journal of Computational Biology, 1995.

    Google Scholar 

  2. R. Agarwala and D. Fernández-Baca. A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM J. Computing 23 (1994), 1216–1224.

    Article  Google Scholar 

  3. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of approximation problems. In 33rd FOCS, pages 14–23, 1992.

    Google Scholar 

  4. P. Berman and V. Ramayer. Improved approximations for the Steiner tree problem. In 3rd SODA, pages 1–10, 1992.

    Google Scholar 

  5. M. Bern and P. Plassman. The Steiner problem with edge lengths 1 and 2. Information Processing Letters, 32:171–176, 1989.

    Article  Google Scholar 

  6. H. Bodlaender, M. Fellows, and T. Warnow. Two strikes against perfect phylogeny. In Proceedings of the 19th International Colloquium on Automata, Languages, and Programming, pp. 273–283, Springer Verlag, Lecture Notes in Computer Science, 1992.

    Google Scholar 

  7. W.H.E. Day, D.S. Johnson, and D. Sankoff. The computational complexity of inferring rooted phylogenies by parsimony. Mathematical Biosciences, 81:33–42, 1986.

    Article  Google Scholar 

  8. A. Dress and M. Steel. Convex tree realizations of partitions. Appl. Math. Letters, Vol. 5, No. 3, 3–6, 1992.

    MathSciNet  Google Scholar 

  9. G. F. Estabrook, C. S. Johnson Jr., and F. R. McMorris. An idealized concept of the true cladistic character. Mathematical Biosciences, 23, 263–272, 1975.

    Article  Google Scholar 

  10. G. F. Estabrook. Cladistic methodology: A discussion of the theoretical basis for the induction of evolutionary history. Annual Review of Ecology and Systematics, Vol. 3, 427–456, 1972.

    Article  Google Scholar 

  11. W. M. Fitch. Aspects of Molecular Evolution. Annual Reviews of Genetics, Vol. 7, 343–380, 1973.

    Article  Google Scholar 

  12. D. Gusfield. The Steiner tree problem in phylogeny. Unpublished manuscript.

    Google Scholar 

  13. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, Vol. 21, 19–28, 1991.

    Google Scholar 

  14. S. Kannan and T. Warnow. Triangulating three-colored graphs. SIAM J. on Discrete Mathematics, Vol. 5, 249–258, 1992.

    Article  Google Scholar 

  15. S. Kannan and T. Warnow. Inferring evolutionary history from DNA sequences. In Proceedings of the 31st Annual Symposium on the Foundations of Computer Science, pp. 362–378, St. Louis, Missouri, 1990.

    Google Scholar 

  16. S. Kannan and T. Warnow. A fast algorithm for the computation and enumeration of perfect phylogenies. Manuscript, A preliminary version was presented at SODA '95.

    Google Scholar 

  17. F.R. McMorris, T. J. Warnow, and T. Wimer. Triangulating vertex colored graphs. To appear in Proceedings of the 4th Annual Symposium on Discrete Algorithms, Austin, Texas, 1993.

    Google Scholar 

  18. C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. Journal of Computer and System Sciences, 43. Also in STOC '88.

    Google Scholar 

  19. M.A. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification, 9:91–116, 1992.

    Google Scholar 

  20. Tandy Warnow, Donald Ringe, and Ann Taylor. Reconstructing the evolutionary history of natural languages. To appear in Proc. SODA 96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Friedhelm Meyer Burkhard Monien

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández-Baca, D., Lagergren, J. (1996). A polynomial-time algorithm for near-perfect phylogeny. In: Meyer, F., Monien, B. (eds) Automata, Languages and Programming. ICALP 1996. Lecture Notes in Computer Science, vol 1099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61440-0_168

Download citation

  • DOI: https://doi.org/10.1007/3-540-61440-0_168

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61440-1

  • Online ISBN: 978-3-540-68580-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics