Skip to main content

Proof-terms for classical and intuitionistic resolution

Extended abstract

  • Session 1A
  • Conference paper
  • First Online:
Automated Deduction — Cade-13 (CADE 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1104))

Included in the following conference series:

Abstract

We exploit a system of realizers for classical logic, and a translation from resolution into the sequent calculus, to assess the intuitionistic force of classical resolution for a fragment of intuitionistic logic. This approach is in contrast to formulating locally intuitionistically sound resolution rules. The techniques use the λμε-calculus, a development of Parigot's λμ-calculus.

This research was supported in part by UK EPSRC grants GR/J46616 and GR/K41687 under the common title, “Search Modules I: Representation and Combination of Proof Procedures”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.B. Andrews. Theorem-proving with general matings. JACM, 28:193–214, 1981.

    Article  Google Scholar 

  2. A. Avron. Gentzen-type systems, resolution and tableaux. J. Automat. Reas., 10(2):265–282, 1993.

    Article  Google Scholar 

  3. W. Bibel. On matrices with connections. JACM, 28:633–645, 1981.

    Article  Google Scholar 

  4. W. Bibel. Computationally improved versions of Herbrand's theorem. In: Stern (ed.), Proc. of the Herbrand Colloquium, North-Holland, 1982.

    Google Scholar 

  5. M. Dummett. Elements of Intuitionism. Oxford University Press, 1980.

    Google Scholar 

  6. M.C. Fitting. Resolution for intuitionistic logic. In: Z. W. Ras and M. Zemankova (eds.), Methodologies for intelligent systems, 400–407, Elsevier, 1987.

    Google Scholar 

  7. M.C. Fitting. First-order modal tableaux. J. Automat. Reas., 4:191–214, 1988.

    Google Scholar 

  8. G. Gentzen. Untersuchungen über das logische Schliessen. Math. Zeit., 176–210, 405–431, 1934.

    Google Scholar 

  9. S.Yu Maslov. Theory of Deductive Systems and its Applications. MIT Press, 1987.

    Google Scholar 

  10. D. Miller, G. Nadathur, A. Ščedrov and F. Pfenning. Uniform proofs as a foundation for logic programming. Ann. Pure Appl. Logic, 51:125–157, 1991.

    Article  Google Scholar 

  11. G. Mints. Gentzen-type systems and resolution rules part I: Propositional logic. In: P. Martin-Löf and G. Mints (eds.), Proc. COLOG-88, LNCS 417, 198–231, 1990.

    Google Scholar 

  12. H.J. Ohlbach. A resolution calculus for modal logics. In: E. Lusk and R. Overbeek (eds.), Proc. 9th CADE, LNCS 310, 500–516, 1988.

    Google Scholar 

  13. M. Parigot. λμ-calculus: an algorithmic interpretation of classical natural deduction. In: Proc. LPAR '98, LNCS 624, 190–201, 1992.

    Google Scholar 

  14. D. Pym and L. Wallen. Proof-search in the λπ-calculus. In: G. Huet and G. Plotkin (eds.), Logical Frameworks, 309–340, Cambridge Univ. Press, 1991.

    Google Scholar 

  15. D. Pym and L. Wallen. Logic programming via proof-valued computations. In: K. Broda (ed.), ALPUK '92, 253–262, WICS, Springer-Verlag, 1992.

    Google Scholar 

  16. E. Ritter, D. Pym and L. Wallen. On the intuitionistic force of classical search. In: P. Miglioli, U. Moscato, D. Mundici and M. Ornaghi (eds.), Proc. Tableaux '96, LNCS 1071, 295–311, 1996.

    Google Scholar 

  17. J. Robinson. A machine-oriented logic based on the resolution principle. JACM, 12:23–41, 1965.

    Article  Google Scholar 

  18. R. Smullyan. First-order logic. Ergebnisse der Math. 43, Springer-Verlag, 1968.

    Google Scholar 

  19. L. Wallen. Generating connection calculi from tableau-and sequent-based proof systems. In: A.G. Cohn and J.R. Thomas (eds.), Artificial Intelligence and its Applications, 35–50, John Wiley & Sons, 1986, (Proc. AISB'85, 1985).

    Google Scholar 

  20. L. Wallen. Matrix proof methods for modal logics. In: J. McDermott (ed.), Proc. 10th IJCAI, 917–923, Morgan Kaufmann Inc., 1987.

    Google Scholar 

  21. L. Wallen. Automated Deduction in Non-Classical Logics. MIT Press, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. A. McRobbie J. K. Slaney

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ritter, E., Pym, D., Wallen, L. (1996). Proof-terms for classical and intuitionistic resolution. In: McRobbie, M.A., Slaney, J.K. (eds) Automated Deduction — Cade-13. CADE 1996. Lecture Notes in Computer Science, vol 1104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61511-3_66

Download citation

  • DOI: https://doi.org/10.1007/3-540-61511-3_66

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61511-8

  • Online ISBN: 978-3-540-68687-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics