Skip to main content

Parallel solution of sparse problems by using a sequence of large dense blocks

  • Conference paper
  • First Online:
Applied Parallel Computing Industrial Computation and Optimization (PARA 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1184))

Included in the following conference series:

Abstract

Linear least squares problems arise in many important fields of science and engineering (such as econometry, geodesy, statistics, structural analysis, fluid dynamics, etc.). Applications from all these fields are to be handled numerically in the solution of various models used in the development of new industrial products. At the National Environmental Research Institute (Denmark), linear least squares problems have been applied in the efforts to determine optimal values of some of the parameters involved in air pollution models.

Large and sparse least squares problems can be handled by treating a sequence of dense blocks. Standard parallel subroutines, which perform orthogonal decomposition of dense matrices (as, for example, subroutines from LAPACK, SCALAPACK or NAG), can be used to handle successively the dense blocks. A preliminary reordering procedure, LORA, is to be applied at the beginning of the computational process. The size of the blocks can be adjusted to the particular computer used. Results obtained on a Silicon Graphics POWER CHALLENGE are given.

The same method can also be used in the solution of large and sparse systems of linear algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D.i ”LA-PACK: Users' guide”, SIAM, Philadelphia, 1992.

    Google Scholar 

  2. Duff, I. S., ”Full matrix techniques in sparse Gaussian elimination”, In: ”Numerical Analysis Proceedings, Dundee 1981” (G. Watson, ed.), pp. 331–348. Springer, Berlin, 1981.

    Google Scholar 

  3. Duff, I. S., ”A review of frontal methods for solving linear systems”, Computer Physics Communications; to appear.

    Google Scholar 

  4. Duff, I. S., ”Sparse numerical linear algebra: direct methods and preconditioning”, Report No. RAL-TR-96-047, Department for Computation and Information, Atlas Centre, Rutherford Appleton Laboratory, Oxon OX11 0QX, England, 1996.

    Google Scholar 

  5. Duff, I. S., Grimes, R. G. and Lewis, J. G., ”Sparse matrix test problems”, ACM Trans. Math. Software, 15 (1989), 1–14.

    Google Scholar 

  6. Duff, I, S. and Reid, J. K., ”Some design features of a sparse matrix code”, ACM Trans. Math. Software, 5 (1979), 18–35.

    Google Scholar 

  7. Duin, A. C. N. van, Hansen P. C., Ostromsky, Tz, Wijsoff, H. and Zlatev, Z., ”Improving the numerical stability and the performance of a parallel sparse solver”, Comp. Math. Appl., Vol. 30, No. 12 (1995), 81–96.

    Google Scholar 

  8. Gallivan, K., Hansen P. C., Ostromsky Tz., and Zlatev, Z., ”A locally optimized reordering algorithm and its application to a parallel sparse linear system solver”, Computing, 54 (1995), 39–67.

    Google Scholar 

  9. Hansen, P. C., Ostromsky, Tz., Sameh, A. and Zlatev, Z., ”Solving sparse linear least squares problems on some supercomputers by using a sequence of large dense blocks”, Internal report, 1995.

    Google Scholar 

  10. Matstoms, P., ”The multifrontal solution of sparse linear least squares problems”, Thesis, Department of Mathematics, Linköping University, Linköping, Sweden, 1991.

    Google Scholar 

  11. Ostromsky, Tz., Hansen, P. C. and Zlatev, Z., ”A parallel sparse QR-factorization algorithm”, In: ”Applied Parallel Computing in Physics, Chemistry and Engineering Science” (J. Dongarra, K. Madsen and J. Waśniewski, eds), pp. 462–472, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  12. Puglisi, C., ”QR factorization of large sparse overdetermined and square matrices using a multifrontal method in a multiprocessor environment”, PhD Thesis. Report No. TH/PA/93/33, CERFACS, Toulouse, 1993.

    Google Scholar 

  13. Salvini, S., ”Linear algebra subprograms on shared memory computers: Beyond LAPACK”, Springer-Verlag, Berlin, to appear.

    Google Scholar 

  14. Walker, D. W. and Dongarra, J. J., ”MPI: A standard message-passing interface”, SIAM News, Vol. 29, No. 1, 1–9.

    Google Scholar 

  15. Zlatev, Z., ”Computational methods for general sparse matrices”, Kluwer Academic Publishers, Dordrecht-Toronto-London, 1991.

    Google Scholar 

  16. Zlatev, Z., Wasniewski, J. and Schaumburg, K., ”A testing scheme for subroutines solving large linear systems”, Comput. Chem., 5 (1981), 91–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jerzy Waśniewski Jack Dongarra Kaj Madsen Dorte Olesen

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ostromsky, T., Salvini, S., Wasniewski, J., Zlatev, Z. (1996). Parallel solution of sparse problems by using a sequence of large dense blocks. In: Waśniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds) Applied Parallel Computing Industrial Computation and Optimization. PARA 1996. Lecture Notes in Computer Science, vol 1184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62095-8_60

Download citation

  • DOI: https://doi.org/10.1007/3-540-62095-8_60

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62095-2

  • Online ISBN: 978-3-540-49643-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics