Skip to main content

Capturing the connectivity of high-dimensional geometric spaces by parallelizable random sampling techniques

  • Workshop on Randomized Parallel Computing Panos Pardalos, University of Florisa, Gainesvill Sanguthevar Rajasekaran, University of Florida, Gainesville
  • Conference paper
  • First Online:
Parallel and Distributed Processing (IPPS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1388))

Included in the following conference series:

Abstract

Finding paths in high-dimensional gemetric spaces is a provably hard problem. Recently, a general randomized planning scheme has emerged as an effective approach to solve this problem. In this scheme, the planner samples the space at random and build a network of simple paths, called a probabilistic roadmap. This paper describes a basic probabilistic roadmap planner, which is easily parallelizable, and provides a formal analysis that explains its empirical success when the space satisfies two geometric properties called e-goodness and expansiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amato, N., Wu, Y: A Randomized Roadmap Method for Path and Manipulation Planning. Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN (1996) 113–120.

    Google Scholar 

  2. Barraquand, J., Kavraki, L.E., Latombe, J.C., Li, T.Y., Motwani, R., Raghavan, P.: A Random Sampling Scheme for Path Planning. Int. J. of Robotics Research, 16(6) (1997) 759–774.

    Google Scholar 

  3. Barraquand, J., Latombe, J.C.: Robot Motion Planning: A Distributed Representation Approach. Int. J. of Robotics Research, 10(6) (1991) 628–649.

    Google Scholar 

  4. Canny, J.F.: The Complexity of Robot Motion Planning, Cambridge:MIT Press (1988).

    Google Scholar 

  5. Chang, H., Li, T.Y.: Assembly Maintainability Study with Motion Planning, Proc. IEEE Int. Conf. on Robotics and Automation. Nagoya: IEEE (1995) 1012–1019.

    Google Scholar 

  6. Dobkin, D.O., Hershberger, J., Kirkpatrick, D.G., Suri, S.: Computing the Intersection Depth of Polyhedra. Algorithmica, 9 (1993) 518–533.

    Article  Google Scholar 

  7. E.G. Gilbert, D.W.Johhson, and S.S. Keerthi. A Fast Procedure for Computing the Distance Between Complex Robots in Three-Dimensional Space. IEEE Transactions on Robotics and Automation, 4:193–203, 1988.

    Article  Google Scholar 

  8. Hopcroft, J.E., Schwartz, J.T., and Sharir, M. 1984. On the Complexity of Motion Planning for Multiple Independent Objects: PSPACE-Hardness of the ‘Warehouseman's Problem'. Int. J. of Robotics Res. 3(4):76–88.

    Google Scholar 

  9. Hopcroft, J.E. and Wilfong, G.T. 1986. Reducing Multiple Object Motion Planning to Graph Searching. SIAM J. on Computing. 15(3):768–785.

    Article  Google Scholar 

  10. T. Horsch, F. Schwarz, and H. Tolle. Motion Planning for Many Degrees of Freedom — Random Reflections at C-Space Obstacles. Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, CA April 1994, pp. 3318–3323.

    Google Scholar 

  11. D. Hsu, L.E. Kavraki, J.C. Latombe, R. Motwani, and S. Sorkin. On Finding Narrow Passages with Probabilistic Roadmap Planners. To appear in Proc. Workshop on Algorithmic Foundations of Robotics (WAFR), Houston, TX, April 1988.

    Google Scholar 

  12. D. Hsu, J.C. Latombe, and R. Motwani. Path Planning in Expansive Configuration Spaces. Proc. IEEE Int. Conf. on Robotics and Automation, Albuquerque, NM, 1997, pp. 2719–2726. An extended version of this paper will appear in Int. J. of Computational Geometry and Applications.

    Google Scholar 

  13. P. Jiménez, F. Thomas, and C. Torras. Collision Detection Algorithms for Motion Planning. Robot Motion Planning and Control, J.P. Laumond (ed.), Lecture Notes in Control and Information Sciences, 229, Springer, New York, NY, 1998, pp. 305–343.

    Google Scholar 

  14. Joseph, D.A. and Plantiga, W.H. 1985. On the Complexity of Reachability and Motion Planning Questions. Proc. 1st ACM Symp. on Computational Geometry, pp. 62–66.

    Google Scholar 

  15. L. Kavraki. Random Networks in Configuration Space for Fast Path Planning. Ph.D. Thesis, Rep. No. STAN-CS-TR-95-1535, Department of Computer Science, Stanford Univ., Stanford, CA, 1995.

    Google Scholar 

  16. L. Kavraki, J.C. Latombe, R. Motwani, and P. Raghavan. Randomized Query Processing in Robot Motion Planning. Proc. ACM SIGACT Symposium on the Theory of Computing (STOC), Las Vegas, Nevada, 1995, pp. 353–362.

    Google Scholar 

  17. L. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580, August 1996.

    Article  Google Scholar 

  18. Koga, Y., Kondo, K., Kuffner, J., and Latombe, J.C. 1994. Planning Motions with Intentions. Proc. of SIGGRAPH'94, ACM, pp. 395–408.

    Google Scholar 

  19. M. Lin and J.F. Canny. A Fast Algorithm for Incremental Distance Computation. Proc, of the IEEE Int. Conf. on Robotics and Automation, Sacramento, CA, 1994, pp. 602–608.

    Google Scholar 

  20. M. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision detection: Algorithms and applications. Algorithmic Foundations of Robotics, Goldberg et al. (Eds), A K Peters, Ltd., 1995, pp. 129–141.

    Google Scholar 

  21. C.J. Ong and E.G. Gilbert. Growth Distances: New Measures for Object Separation and Penetration. IEEE Tr. on Robotics and Automation, 12(6):888–903, 1996.

    Article  Google Scholar 

  22. M. Overmars. A random Approach to Motion Planning. Technical Report, RUUCS-92-32, Department of Computer Science, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands, 1992.

    Google Scholar 

  23. M. Overmars and P. Švestka. A Probabilistic Learning Approach to Motion Planning. Algorithmic Foundations of Robotics, K. Goldberg et al. (eds.), A.K. Peters, Wellesley, MA, 1995, pp. 19–37.

    Google Scholar 

  24. S. Quinlan. Efficient Distance Computation Between Non-Convex Objects. Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, CA, 1994, pp. 3324–3330.

    Google Scholar 

  25. Reif, J. 1979. Complexity of the Mover's Problem and Generalizations. Proc. IEEE Symp. on Foundations of Computer Science. IEEE, pp. 421–4127.

    Google Scholar 

  26. P. Svestka and M. Overmars. Probabilistic Path Planning. Robot Motion Planning and Control, J.P. Laumond (ed.), Lecture Notes in Control and Information Sciences, 229, Springer, New York, NY, 1998, pp. 255–304.

    Google Scholar 

  27. Schwartz, J.T. and Sharir, M. 1983. On the ‘Piano Movers’ Problem: II. General Techniques for Computing Topological Properties of Real Algebraic Manifolds. Advances in Applied Mathematics. 4:298–351.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Rolim

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hsu, D., Kavraki, L.E., Latombel, JC., Motwani, R. (1998). Capturing the connectivity of high-dimensional geometric spaces by parallelizable random sampling techniques. In: Rolim, J. (eds) Parallel and Distributed Processing. IPPS 1998. Lecture Notes in Computer Science, vol 1388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64359-1_704

Download citation

  • DOI: https://doi.org/10.1007/3-540-64359-1_704

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64359-3

  • Online ISBN: 978-3-540-69756-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics