Skip to main content

New algorithms to predict secondary structures of RNA macromolecules

  • Predictive Models
  • Conference paper
  • First Online:
Methodology and Tools in Knowledge-Based Systems (IEA/AIE 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1415))

  • 4415 Accesses

Abstract

In this paper, we present, under the Hypothesis of Linearity of Energy (HLE), new algorithms to solve the problem of the prediction by energy computation of RNA stable secondary structures. We present our dynamic programming algorithm to compute the free energies of the stable secondary structures, and our traceback algorithm to predict these structures. Our algorithm for computing the free energies is of complexities O(n 3) in computing time and O(n 2) in memory space, where n is the length of the string. Our prediction algorithm is of complexity O(n*log2(n)) in computing time. Compared to other algorithms, under the HLE, our algorithms present the advantage of taking into account the energetic contribution of all the unpaired bases, in addition to the energetic contribution of the paired ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The Design and Analysis of Computer Algorithms. Addison-Wesley Publishing Company) (1974) 60–65

    Google Scholar 

  2. Auron, B. E., Rindowe, W. P., Vary, C. P. H., Celentano, J. J., Vournakis, J. N.: Computer Aided Prediction of RNA secondary structures. Nucleic Acids Research, Vol. 10, N° 1 (1982) 403–419

    Article  Google Scholar 

  3. Bellman, R. E.: Dynamic Programming. Princeton University Press, New Jersey (1957)

    MATH  Google Scholar 

  4. Bellman, R. E., Dreyfus, S. E.: Applied Dynamic Programming. Princeton University Press, New Jersey (1962)

    MATH  Google Scholar 

  5. Berge, C.: Graphes et Hypergraphes. Dunod Editeur, Paris (1970)

    MATH  Google Scholar 

  6. Delisi, Ch., Crothers, D. M.: Prediction of RNA Secondary Structure. Proc. Nat. Acad. Sci. USA, Vol. 68, N°11 (Nov. 1971) 2682–2685

    Article  Google Scholar 

  7. Dumas, J. P., Ninio, J.: Efficient Algorithms for Folding and Comparing Nucleic Acid Sequences. Nucleic Acids Research, Vol. 10, N°1 (1982) 197–206

    Article  Google Scholar 

  8. Elloumi, M.: Analyse de Chaînes de Caractères Codant des Macromolécules Biologiques. Science Doctorate Dissertation, The University of Aix-Marseilles III, France (June 1994)

    Google Scholar 

  9. Gralla, J., Steitz, J. A., Crothers, D. M.: Direct Physical Evidence for Secondary Structure in an Isolated Fragment of R17 Bactériophage mRNA. Ibid, N°248 (1974) 204–208

    Google Scholar 

  10. Gralla, J., Crothers, D. M.: Free Energy of Imperfect Nucleic Acid Helices II, Small Hairpin Loops. J. Mol. Biol., N°73 (1973) 497–511

    Google Scholar 

  11. Gralla, J., Crothers, D. M.: Free Energy of Imperfect Nucleic Acid Helices III, Small Internal Loops Resulting from Mismatches. J. Mol. Biol., N°78 (1973) 301–319

    Google Scholar 

  12. Larmore, L. L., Schieber, B.: On-line Dynamic Programming with Applications to the Prediction of RNA Secondary Structure. J. of Algorithms, N°12 (1991) 490–515

    Google Scholar 

  13. Martinez, H.: A New Algorithm for Calculating RNA Secondary Structure, Manuscript (1980)

    Google Scholar 

  14. Ninio, J.: Prediction of Pairing Schemes in RNA Molecules-Loop Contributions and Energy of Wobble and Non-Wobble Pairs. Biochimie, No61 (1979) 1133–1150

    Google Scholar 

  15. Nussinov, R., Jacobson, A.: Fast Algorithm for Predicting the Secondary Structure of Single-Stranded RNA. Proc. Nat. Acad. Sci. USA, Vol. 77, N°11 (Nov. 1980) 6309–6313

    Article  Google Scholar 

  16. Oppenheimer, N. J., James, T. L.: Nuclear Magnetic Resonance: Part A, Spectral Techniques and Dynamics. Methods in Enzymology, Vol. 176 (1989)

    Google Scholar 

  17. Oppenheimer, N. J., James, T. L.: Nuclear Magnetic Resonance: Part B, Structure and Mechanism. Methods in Enzymology, Vol. 177 (1989)

    Google Scholar 

  18. Papanicolaou, C., Gouy, M., Ninio, J.: An Energy Model that Predicts the Correct Folding of both tRNA and 5sRNA Molecules. Nucleic Acids Research, Vol. 2, N°31 (1984)

    Google Scholar 

  19. Pipas, J. M., Mc Mahon, J. E.: Method for Prediction RNA Secondary Structure. Proc. Nat. Acad. Sci. USA, Vol. 72, N°6 (June 1975) 2017–2021

    Article  Google Scholar 

  20. Salser, W.: Globin Messenger-RNA Sequences: Analysis of Base-Pairing and Evolutionary Implications. Cold Spring Harbor Symp. Quant. Biol., Ndφ2 (1977) 985–1002

    Google Scholar 

  21. Sankoff, D., Morin, A. M., Cedergren, R. J.: The Evolution of 5sRNA Secondary Structure. Journal Canadien de Biochimie, N°56 (1978) 440–443

    Google Scholar 

  22. Sankoff, D., Kruskal, J. B., Mainville, S., Cedergren, R.: Fast Algorithms to Determine RNA Secondary Structures Containing Multipleloops. Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison. MA Addison-Wesley (Eds) (1983) 93–120

    Google Scholar 

  23. Studnicka, G. M., Rahn, G. M., Cummings, I. W., Salser, W. A.: Computer Method for Predicting the Secondary Structure of Single-Stranded RNA. Nucleic Acids Research, Vol. 5, N°9 (1978) 3356–3387

    Article  Google Scholar 

  24. Tinoco Jr., I., Borer, Ph. N., Dengler, B., Levine, M. D., Uhlenbeck, O. C., Crothers, D. M., Gralla, J.: Improved Estimation of Secondary Structure in Ribonucleic Acids. Nature New Biology, N°246 (1973) 40–41

    Google Scholar 

  25. Uhlenbeck, O. C., Borer, Ph. N., Dengler, B., Tinoco, I.: Stability of RNA Hairpin Loops: A6-Cm-U6. J. Mol. Biol., N°73 (1973) 483–496

    Google Scholar 

  26. Waterman, M. S.: Secondary Structure of Single-Stranded Nucleic Acids. Studies in Foundations and Combinatorics, Advances in Mathematics Supplementary Studies, Vol. 1 (1978) 167–212

    MathSciNet  Google Scholar 

  27. Waterman, M. S., Smith, T. F.: RNA Secondary Structure: A Complete Mathematical Analysis. Mathematical Biosciences, N°42 (1978) 257–266

    Google Scholar 

  28. Zuker, M.: The Use of Dynamic Programming Algorithms in RNA Secondary Structure Prediction. Mathematical Methods for DNA Sequences, CRC Press Inc. (Eds.) (1989) 168–170

    Google Scholar 

  29. Zuker, M., Stiegler, P.: Optimal Computer Folding of Large RNA Sequences Using Thermodynamics and Auxiliary Information. Nucleic Acids Research, Vol. 9, N°1 (1981) 133–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Angel Pasqual del Pobil Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Ellourni, M. (1998). New algorithms to predict secondary structures of RNA macromolecules. In: Mira, J., del Pobil, A.P., Ali, M. (eds) Methodology and Tools in Knowledge-Based Systems. IEA/AIE 1998. Lecture Notes in Computer Science, vol 1415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64582-9_820

Download citation

  • DOI: https://doi.org/10.1007/3-540-64582-9_820

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64582-5

  • Online ISBN: 978-3-540-69348-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics