Skip to main content

An Implementation of a Combinatorial Approximation Algorithm for Minimum-Cost Multicommodity Flow

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1412))

Abstract

The minimum-cost multicommodity flow problem involves si- multaneously shipping multiple commodities through a single network so that the total flow obeys arc capacity constraints and has minimum cost. Multicommodity flow problems can be expressed as linear programs, and most theoretical and practical algorithms use linear-programming algorithms specialized for the problems’ structures. Combinatorial ap- proximation algorithms in [GK96,KP95b,PST95] yield flows with costs slightly larger than the minimum cost and use capacities slightly larger than the given capacities. Theoretically, the running times of these algo- rithms are much less than that of linear-programming-based algorithms. We combine and modify the theoretical ideas in these approximation al- gorithms to yield a fast, practical implementation solving the minimum- cost multicommodity flow problem. Experimentally, the algorithm solved our problem instances (to 1% accuracy) two to three orders of magni- tude faster than the linear-programming package CPLEX [CPL95] and the linear-programming based multicommodity flow program PPRN [CN96].

Research partially supported by an NSF Graduate Research Fellowship, ARO Grant DAAH04-95-1-0121, and NSF Grants CCR-9304971 and CCR-9307045.

Research supported by ARO Grant DAAH04-95-1-0121, NSF Grants CCR-9304971 and CCR-9307045, and a Terman Fellowship.

Research partly supported by NSF Award CCR-9308701 and NSF Career Award CCR-9624828. Some of this work was done while this author was visiting Stanford University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  2. I. Adler, M. G. C. Resende, G. Veiga, and N. Karmarkar. An implementation of Karmarkar’s algorithm for linear programming. Mathematical Programming A, 44(3):297–335, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. A. Assad. Multicommodity network flows — A survey. Networks, 8(1):37–91, Spring 1978.

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Badics. genrmf. 1991. ftp://dimacs.rutgers.edu/pub/netflow/generators/network/genrmf/

  5. J. Castro and N. Nabona. An implementation of linear and nonlinear multicommodity network flows. European Journal of Operational Research, 92(1):37–53, 1996.

    Article  MATH  Google Scholar 

  6. CPLEX Optimization, Inc., Incline Village, NV. Using the CPLEX Callable Library, 4.0 edition, 1995.

    Google Scholar 

  7. G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963.

    MATH  Google Scholar 

  8. M. D. Grigoriadis and L. G. Khachiyan. Approximate minimum-cost multicommodity flows in Õ( −2 knm) time. Mathematical Programming, 75(3):477–482, 1996.

    Article  MathSciNet  Google Scholar 

  9. A. V. Goldberg. A natural randomization strategy for multicommodity flow and related algorithms. Information Processing Letters, 42(5):249–256, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Goldberg, J. D. Oldham, S. Plotkin, and C. Stein. An implementation of a combinatorial approximation algorithm for minimum-cost multicommodity flow. Technical Report CS-TR-97-1600, Stanford University, December 1997.

    Google Scholar 

  11. M. D. Grigoriadis. An efficient implementation of the network simplex method. Mathematical Programming Study, 26:83–111, 1986.

    MATH  MathSciNet  Google Scholar 

  12. R. W. Hall and D. Lotspeich. Optimized lane assignment on an automated highway. Transportation Research—C, 4C(4):211–229, 1996.

    Google Scholar 

  13. A. Haghani and S.-C. Oh. Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations. Transportation Research—A, 30A(3):231–250, 1996.

    Google Scholar 

  14. N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4):373–395, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. L. Kennington and R. V. Helgason. Algorithms for Network Programming. John Wiley & Sons, New York, 1980.

    MATH  Google Scholar 

  16. L. G. Khachiyan. Polynomial algorithms in linear programming. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki (Journal of Computational Mathematics and Mathematical Physics), 20(1):51–68, 1980.

    MATH  MathSciNet  Google Scholar 

  17. A. Kamath and O. Palmon. Improved interior point algorithms for exact and approximate solution of multicommodity flow problems. In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, Vol. 6, pages 502–511. Association for Computing Machinery, January 1995.

    MathSciNet  Google Scholar 

  18. D. Karger and S. Plotkin. Adding multiple cost constraints to combinatorial optimization problems, with applications to multicommodity flows. In Symposium on the Theory of Computing, Vol. 27, pages 18–25. Association for Computing Machinery, ACM Press, May 1995.

    Google Scholar 

  19. P. Klein, S. Plotkin, C. Stein, and É. Tardos. Faster approximation algorithms for the unit capacity concurrent flow problem with applications to routing and finding sparse cuts. SIAM Journal on Computing, 23(3):466–487, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Kapoor and P. M. Vaidya. Fast algorithms for convex quadratic programming and multicommodity flows. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing, Vol. 18, pages 147–159. Association for Computing Machinery, 1986.

    Google Scholar 

  21. LMP+95._T. Leighton, F. Makedon, S. Plotkin, C. Stein, É. Tardos, and S. Tragoudas. Fast approximation algorithms for multicommodity flow problems. Journal of Computer and System Sciences, 50(2):228–243, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. Lee and J. Orlin. GRIDGEN. 1991. ftp://dimacs.rutgers.edu/pub/netflow/generators/network/gridgen/

  23. T. Leong, P. Shor, and C. Stein. Implementation of a combinatorial multicommodity flow algorithm. In David S. Johnson and Catherine C. Mc-Geoch, editors, Network Flows and Matching, Series in Discrete Mathematics and Theoretical Computer Science, Vol. 12, pages 387–405. American Mathematical Society, 1993.

    Google Scholar 

  24. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C. Cambridge University Press, Cambridge, 1988.

    MATH  Google Scholar 

  25. S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approximation algorithms for fractional packing and covering problems. Mathematics of Operations Research, 20(2):257–301, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Radzik. Fast deterministic approximation for the multicommodity flow problem. Mathematical Programming, 78(1):43–58, 1997.

    Article  MathSciNet  Google Scholar 

  27. J. Raphson. Analysis Æquationum Universalis, seu, Ad Æquationes Algebraicas Resolvendas Methodus Generalis, et Expedita. Prostant venales apud Abelem Swalle, London, 1690.

    Google Scholar 

  28. R. Schneur. Scaling Algorithms for Multicommodity Flow Problems and Network Flow Problems with Side Constraints. PhD thesis, MIT, Cambridge, MA, February 1991.

    Google Scholar 

  29. P. M. Vaidya. Speeding up linear programming using fast matrix multiplication. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science, Vol. 30, pages 332–337. IEEE Computer Society Press, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, A.V., Oldham, J.D., Plotkin, S., Stein, C. (1998). An Implementation of a Combinatorial Approximation Algorithm for Minimum-Cost Multicommodity Flow. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds) Integer Programming and Combinatorial Optimization. IPCO 1998. Lecture Notes in Computer Science, vol 1412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69346-7_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-69346-7_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64590-0

  • Online ISBN: 978-3-540-69346-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics