Skip to main content

Islands in the Stream: Electromigration-Driven Shape Evolution with Crystal Anisotropy

  • Conference paper
Multiscale Modeling in Epitaxial Growth

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 149))

Abstract

We consider the shape evolution of two-dimensional islands on a crystal surface in the regime where mass transport is exclusively along the island edge. A directed mass current due to surface electromigration causes the island to migrate in the direction of the force. Stationary shapes in the presence of an anisotropic edge mobility can be computed analytically when the capillary effects of the line tension of the island edge are neglected, and conditions for the existence of non-singular stationary shapes can be formulated. In particular, we analyse the dependence of the direction of island migration on the relative orientation of the electric field to the crystal anisotropy, and we show that no stationary shapes exist when the number of symmetry axes is odd. The full problem including line tension is solved by time-dependent numerical integration of the sharp-interface model. In addition to stationary shapes and shape instability leading to island breakup, we also find a regime where the shape displays periodic oscillations.

This work was supported by DFG within SFB 616 Energiedissipation an Oberflächen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.V. Thompson, J.R. Lloyd, Electromigration and IC interconnects. MRS Bulletin 18, No. 12 (1993), 19–25.

    Google Scholar 

  2. K.N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94 (2003), 5451–5473.

    Article  Google Scholar 

  3. Z. Suo, Reliability of Interconnect Structures. In: Comprehensive Structural Integrity, I. Milne, R.O. Ritchie, B. Karihaloo, Editors-in-Chief, Vol. 8: Interfacial and Nanoscale Failure, W. Gerberich, W. Yang, Editors (Elsevier, Amsterdam 2003), 265–324.

    Google Scholar 

  4. E. Arzt, O. Kraft, W.D. Nix, J.E. Sanchez, Jr., Electromigration failure by shape change of voids in bamboo lines. J. Appl. Phys. 76 (1994), 1563–1571.

    Article  Google Scholar 

  5. O. Kraft, Untersuchung und Modellierung der Elektromigrationsschädigung in miniaturisierten Aluminiumleiterbahnen. PhD Dissertation (University of Stuttgart, 1995).

    Google Scholar 

  6. Y.-C. Joo, S.P. Baker, E. Arzt, Electromigration in single-crystal aluminum lines with fast diffusion paths made by nanoindentation. Acta Mater. 46 (1998) 1969–1979.

    Article  Google Scholar 

  7. M.R. Gungor, D. Maroudas, Theoretical analysis of electromigration-induced failure of metallic thin films due to transgranular void propagation. J. Appl. Phys. 85 (1999) 2233–2246.

    Article  Google Scholar 

  8. A.H. Verbruggen, Fundamental questions in the theory of electromigration. IBM J. Res. Develop. 32 (1988) 93–98.

    Google Scholar 

  9. R.S. Sorbello, Theory of electromigration. Solid State Phys. 51 (1998), 159–231.

    Google Scholar 

  10. O. Pierre-Louis, T.L. Einstein, Electromigration of single-layer clusters. Phys. Rev. B 62 (2000) 13697–13706.

    Article  Google Scholar 

  11. J.-J. Métois, J.C. Heyraud, A. Pimpinelli, Steady-state motion of silicon islands driven by a DC current. Surf. Sci. 420 (1999), 250–258.

    Article  Google Scholar 

  12. A. Saúl, J.-J. Métois, A. Ranguis, Experimental evidence for an Ehrlich-Schwoebel effect on Si(111). Phys. Rev. B 65 (2002) 075409.

    Article  Google Scholar 

  13. H. Mehl, O. Biham, O. Millo, M. Karimi, Electromigration-induced flow of islands and voids on the Cu(100) surface. Phys. Rev. B 61 (2000), 4975–4982.

    Article  Google Scholar 

  14. P.J. Rous, Theory of surface electromigration on heterogeneous metal surfaces. Appl. Surf. Sci. 175–176 (2001) 212–217.

    Article  Google Scholar 

  15. J. Krug, Introduction to Step Dynamics and Step Instabilities (this volume).

    Google Scholar 

  16. M. Schimschak and J. Krug, Electromigration-driven shape evolution of two-dimensional voids. J. Appl. Phys. 87 (2000) 695–703.

    Article  Google Scholar 

  17. Z. Suo, W. Wang and M. Yang, Electromigration instabilities: transgranular slits in interconnects. Appl. Phys. Lett. 64 (1994) 1944–1946.

    Article  Google Scholar 

  18. P.S. Ho, Motion of an inclusion induced by a direct current and a temperature gradient. J. Appl. Phys. 41 (1970) 64–68.

    Article  Google Scholar 

  19. W. Wang, Z. Suo, T.-H. Hao, A simulation of electromigration-induced transgranular slits. J. Appl. Phys. 79 (1996) 2394–2403.

    Article  Google Scholar 

  20. M. Mahadevan, R.M. Bradley, Stability of a circular void in a passivated, current-carrying metal film. J. Appl. Phys. 79 (1996), 6840–6847.

    Article  Google Scholar 

  21. L. Xia, A.F. Bower, Z. Suo, C.F. Shih, A finite element analysis of the motion and evolution of voids due to strain and electromigration induced surface diffusion. J. Mech. Phys. Solids 45 (1997) 1473–1493.

    Article  Google Scholar 

  22. M. Schimschak, J. Krug, Electromigration-Induced Breakup of Two-Dimensional Voids. Phys. Rev. Lett. 80 (1998) 1674–1677.

    Article  Google Scholar 

  23. M. Mahadevan, R.M. Bradley, Simulations and theory of electromigration-induced slit formation in unpassivated single-crystal metal lines. Phys. Rev. B 59 (1999), 11037–11046.

    Article  Google Scholar 

  24. Z. Li, H. Zhao, H. Gao, A Numerical Study of Electro-migration Voiding by Evolving Level Set Functions on a Fixed Cartesian Grid. J. Comp. Phys. 152 (1999), 281–304.

    Article  Google Scholar 

  25. M. Ben Amar, L.J. Cummings, G. Richardson, A theoretical treatment of void electromigration in the strip geometry. Comp. Mater. Sci. 17 (2000), 279–289.

    Article  Google Scholar 

  26. D.N. Bhate, A. Kumar, A.F. Bower, Diffuse interface model for electromigration and stress voiding. J. Appl. Phys. 87 (2000) 1712–1721.

    Article  Google Scholar 

  27. L.J. Cummings, G. Richardson, M. Ben Amar, Models of void electromigration. Eur. J. Appl. Math. 12 (2001), 97–134.

    Article  Google Scholar 

  28. J.H. Kim, P.R. Cha, D.H. Yeon, J.K. Yoon, A phase field model for electromigration-induced surface evolution. Metals and Materials International 9 (2003), 279–286.

    Google Scholar 

  29. Z. Suo, Electromigration-induced dislocation climb and multiplication in conducting lines. Acta metall. mater. 42 (1994), 3581–3588.

    Article  Google Scholar 

  30. W. Yang, W. Wang, Z. Suo, Cavity and dislocation instability due to electric current. J. Mech. Phys. Solids 42 (1994) 897–911.

    Article  Google Scholar 

  31. M. Schimschak, Numerische Untersuchungen zur Elektromigration auf metallischen Oberflächen, PhD Dissertation (University of Essen, 1999).

    Google Scholar 

  32. L.F. Shampine, M.K. Gordon, Computer Solution of Ordinary Differential Equations — The Initial Value Problem (W.H. Freeman, San Francisco, 1975).

    Google Scholar 

  33. F. Hausser, A. Voigt (private communication).

    Google Scholar 

  34. P. Kuhn, J. Krug (unpublished).

    Google Scholar 

  35. J. Krug, H.T. Dobbs, Current-Induced Faceting of Crystal Surfaces. Phys. Rev. Lett. 73 (1994), 1947–1950.

    PubMed  Google Scholar 

  36. M. Schimschak, J. Krug, Surface Electromigration as a Moving Boundary Value Problem. Phys. Rev. Lett. 78 (1997), 278–281.

    Article  Google Scholar 

  37. M.R. Gungor, D. Maroudas, Current-induced non-linear dynamics of voids in metallic thin films: morphological transition and surface wave propagation. Surf. Sci. 461 (2000), L550–L556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Kuhn, P., Krug, J. (2005). Islands in the Stream: Electromigration-Driven Shape Evolution with Crystal Anisotropy. In: Voigt, A. (eds) Multiscale Modeling in Epitaxial Growth. ISNM International Series of Numerical Mathematics, vol 149. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7343-1_10

Download citation

Publish with us

Policies and ethics