Skip to main content

Simulation of Ostwald Ripening in Homoepitaxy

  • Conference paper
Multiscale Modeling in Epitaxial Growth

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 149))

  • 898 Accesses

Abstract

Ostwald ripening in homoepitaxy in the submonolayer regime is studied by means of numerical simulations. The simulations indicate, that the coarsening kinetics of the average island radius is described by a t1/a power law, where 2 ≤ a ≤ 3. Here a approaches 2, if the ripening is purely kinetics limited (low attachment rate at the island boundaries) and increases with increasing attachment rate — taking the value a = 3 if the ripening is purely diffusion limited (infinite attachment rate at the island boundaries). For the two limiting cases the classical LSW theory is reviewed and compared with the numerical simulations. Besides the scaling law we also investigate the asymptotic scaled island size distribution function and analyse the influence of anisotropic edge energies and the effect of edge diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Akaiwa, D.I. Meiron, Numerical simulation of two-dimensional late-stage coarsening for nucleation and growth. Phys. Rev. E 51 no.6 (1995), 5408–5421

    Article  Google Scholar 

  2. H.A. Atwater, C.M. Yang Island growth and coarsening in thin films — conservative and nonconservative systems. J. Appl. Phys. 67 (1990), 6202–6213

    Article  Google Scholar 

  3. N.C. Bartelt, W. Theis, R.M. Tromp, Ostwald ripening of two-dimensional islands on Si(001). Phys. Rev. B 54(16) (1996), 11741–11751

    Article  Google Scholar 

  4. E. Bänsch and F. Haußer and O. Lakkis and B. Li and A. Voigt, Finite Element Method for Epitaxial Growth with Attachment-Detachment Kinetics. J. Comput. Phys. 194 (2004), 409–434

    Article  Google Scholar 

  5. F. Haußer and A. Voigt, this volume

    Google Scholar 

  6. E. Bänsch and F. Haußer and A. Voigt, Finite Element Method for epitaxial growth with thermodynamic boundary conditions. SIAM J. Sci. Comput. (2005), (to appear)

    Google Scholar 

  7. T.M. Rogers and R.C. Desai, Numerical study of late-stage coarsening for off-critical quenches in the Cahn-Hilliard equation of phase separation. Phys. Rev. B 39 no.16 (1989), 11956–11964

    Article  Google Scholar 

  8. M. Hillert, On the Theory of Normal and Abnormal Grain Growth. Acta Metall. 13 (1965), 227–238

    Article  Google Scholar 

  9. J. Krug, this volume

    Google Scholar 

  10. I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19 (1961), 35–50

    Article  Google Scholar 

  11. J.A. Marqusee, J. Ross, Kinetics of phase transitions: Theory of Ostwald ripening. J. Chem. Phys. 79(1) (1983), 373–378

    Article  Google Scholar 

  12. J.A. Marqusee, J. Ross, Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction. J. Chem. Phys. 80(1) (1984), 536–543

    Article  Google Scholar 

  13. J.A. Marqusee, J. Ross, Dynamics of late stage phase separations in two dimensions. J. Chem. Phys. 81(2) (1984), 976–981

    Article  Google Scholar 

  14. B. Niethammer, F. Otto, Domain Coarsening in Thin Films. Comm. Pure and App. Math. LIV (2001), 361–384.

    Article  Google Scholar 

  15. B. Niethammer, R.L. Pego, Non-self-similar behavior in the LSW theory of Ostwald Ripening. J. Statist. Phys. 95 (1999), no. 5–6 867–902.

    Article  Google Scholar 

  16. M. Petersen, A. Zangwill, C. Ratsch, Homoepitaxial Ostwald Ripening. Surf. Sci. 536 (2003), 55–60

    Article  Google Scholar 

  17. L. Ratke, P.W. Voorhees, Growth and Coarsening: Ripening in Material Processing. Springer, 2002

    Google Scholar 

  18. P.W. Voorhees, The Theory of Ostald Ripening. J. Statist. Phys. 38 (1985), no. 1-1 231–252.

    Article  Google Scholar 

  19. C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Elektrochemie 65 (1961), 581–591

    Google Scholar 

  20. J.H. Yao, K.R. Elder, H. Guo, M. Grant, Theory and simulation of Ostwald ripening. Phys. Rev. B 47 no.21 (1993), 14110–14125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Haußer, F., Voigt, A. (2005). Simulation of Ostwald Ripening in Homoepitaxy. In: Voigt, A. (eds) Multiscale Modeling in Epitaxial Growth. ISNM International Series of Numerical Mathematics, vol 149. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7343-1_11

Download citation

Publish with us

Policies and ethics