Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 96))

Abstract

Epigenetic mechanisms are involved in critical nuclear processes such as transcriptional control, genome stability, replication and repair. Recent evidence suggests that changes in the epigenetic repertoire can drive tumorigenesis. This review examines the latest experimental evidence that questions the mechanisms underlying the consequence of epigenetic changes in gene regulation and cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428

    Article  CAS  PubMed  Google Scholar 

  2. Buschhausen G, Wittig B, Graessmann M, Graessmann A (1987) Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 84: 1177–1181

    CAS  PubMed  Google Scholar 

  3. Antequera F, Macleod D, Bird AP (1989) Specific protection of methylated CpGs in mammalian nuclei. Cell 58: 509–517

    Article  CAS  PubMed  Google Scholar 

  4. Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58: 499–507

    Article  CAS  PubMed  Google Scholar 

  5. Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88: 471–481

    Article  CAS  PubMed  Google Scholar 

  6. Kass SU, Landsberger N, Wolffe AP (1997) DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol 7: 157–165

    Article  CAS  PubMed  Google Scholar 

  7. Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64: 1123–1134

    Article  CAS  PubMed  Google Scholar 

  8. Buschhausen G, Graessmann M, and Graessmann A (1985) Inhibition of herpes simplex thymidine kinase gene expression by DNA methylation is an indirect effect. Nucleic Acids Res 13: 5503–5513

    CAS  PubMed  Google Scholar 

  9. Prendergast GC, Ziff EB (1991) Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251: 186–189

    CAS  PubMed  Google Scholar 

  10. Clark SJ, Harrison J, Molloy PL (1997) Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene 195: 67–71

    Article  CAS  PubMed  Google Scholar 

  11. Kass SU, Pruss D, Wolffe AP (1997) How does DNA methylation repress transcription? Trends Genet 13: 444–449

    Article  CAS  PubMed  Google Scholar 

  12. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21: 103–107

    Article  CAS  PubMed  Google Scholar 

  13. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19: 187–191

    Article  CAS  PubMed  Google Scholar 

  14. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389

    CAS  PubMed  Google Scholar 

  15. Wade PA (2001) Methyl CpG-binding proteins and transcriptional repression. Bioessays 23: 1131–1137

    Article  CAS  PubMed  Google Scholar 

  16. Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A (2001) Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15: 710–723

    Article  CAS  PubMed  Google Scholar 

  17. Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP (1999) Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 23: 62–66

    CAS  PubMed  Google Scholar 

  18. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13: 1924–1935

    Article  CAS  PubMed  Google Scholar 

  19. El-Osta A (2003) DNMT cooperativity—the developing links between methylation, chromatin structure and cancer. Bioessays 25: 1071–1084

    Article  CAS  PubMed  Google Scholar 

  20. Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203: 971–983

    Article  CAS  PubMed  Google Scholar 

  21. Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19: 219–220

    CAS  PubMed  Google Scholar 

  22. Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9: 2395–2402

    Article  CAS  PubMed  Google Scholar 

  23. Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, Wilson GG (1994) The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 22: 1–10

    CAS  PubMed  Google Scholar 

  24. Pradhan S, Roberts RJ (2000) Hybrid mouse-prokaryotic DNA (cytosine-5) methyltransferases retain the specificity of the parental C-terminal domain. Embo J 19: 2103–2114

    Article  CAS  PubMed  Google Scholar 

  25. Gowher H, Jeltsch A (2002) Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem 277: 20409–20414

    Article  CAS  PubMed  Google Scholar 

  26. Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R, Li E (1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122: 3195–3205

    CAS  PubMed  Google Scholar 

  27. Rhee I, Jair KW, Yen RW, Lengauer C, Herman JG, Kinzler KW, Vogelstein B, Baylin SB, Schuebel KE (2000) CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404: 1003–1007

    CAS  PubMed  Google Scholar 

  28. Bachman KE, Rountree MR, and Baylin SB (2001) Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem 276: 32282–32287

    Article  CAS  PubMed  Google Scholar 

  29. Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T (2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. Embo J 20: 2536–2544

    Article  CAS  PubMed  Google Scholar 

  30. Belinsky SA (2004) Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4: 707–717

    Article  CAS  PubMed  Google Scholar 

  31. Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300: 455

    Article  CAS  PubMed  Google Scholar 

  32. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300: 489–492

    Article  CAS  PubMed  Google Scholar 

  33. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301: 89–92

    Article  CAS  PubMed  Google Scholar 

  34. El-Osta A (2004) The rise and fall of genomic methylation in cancer. Leukemia 18: 233–237

    Article  CAS  PubMed  Google Scholar 

  35. Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD, Sakai T (1993) CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 8: 1063–1067

    CAS  PubMed  Google Scholar 

  36. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1: 686–692

    Article  CAS  PubMed  Google Scholar 

  37. Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48: 880–888

    CAS  PubMed  Google Scholar 

  38. Rice JC, Ozcelik H, Maxeiner P, Andrulis I, Futscher BW (2000) Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis 21: 1761–1765

    Article  CAS  PubMed  Google Scholar 

  39. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW et al. (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95: 6870–6875

    Article  CAS  PubMed  Google Scholar 

  40. Hiltunen MO, Alhonen L, Koistinaho J, Myohanen S, Paakkonen M, Marin S, Kosma VM, Janne J (1997) Hypermethylation of the APC (adenomatous polyposis coli) gene promoter region in human colorectal carcinoma. Int J Cancer 70: 644–648

    Article  CAS  PubMed  Google Scholar 

  41. van dVPA, Metzelaar-Blok JA, Bergman W, Monique H, Hurks H, Frants RR, Gruis NA, Jager MJ (2001) Promoter hypermethylation: a common cause of reduced p16(INK4a) expression in uveal melanoma. Cancer Res 61: 5303–5306

    Google Scholar 

  42. Wang JC, Chen W, Nallusamy S, Chen C, Novetsky AD (2002) Hypermethylation of the P15INK4b and P16INK4a in agnogenic myeloid metaplasia (AMM) and AMM in leukaemic transformation. Br J Haematol 116: 582–586

    Article  CAS  PubMed  Google Scholar 

  43. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM et al. (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91: 9700–9704

    CAS  PubMed  Google Scholar 

  44. El-Osta A, Kantharidis P, Zalcberg JR, Wolffe AP (2002) Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol Cell Biol 22: 1844–1857

    Article  CAS  PubMed  Google Scholar 

  45. Magdinier F, and Wolffe AP (2001) Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc Natl Acad Sci USA 98: 4990–4995

    Article  CAS  PubMed  Google Scholar 

  46. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW et al. (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416: 552–556

    Article  CAS  PubMed  Google Scholar 

  47. Grignani F, De MS, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I et al. (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391: 815–818

    CAS  PubMed  Google Scholar 

  48. Di CL, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo CF, Kouzarides T, Nervi C et al. (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295: 1079–1082

    Google Scholar 

  49. Dennis K, Fan T, Geiman T, Yan Q, Muegge K (2001) Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev 15: 2940–2944

    Article  CAS  PubMed  Google Scholar 

  50. Geiman TM, Tessarollo L, Anver MR, Kopp JB, Ward JM, Muegge K (2001) Lsh, a SNF2 family member, is required for normal murine development. Biochim Biophys Acta 1526: 211–220

    CAS  PubMed  Google Scholar 

  51. Fan T, Yan Q, Huang J, Austin S, Cho E, Ferris D, Muegge K (2003) Lsh-deficient murine embryonal fibroblasts show reduced proliferation with signs of abnormal mitosis. Cancer Res 63: 4677–4683

    CAS  PubMed  Google Scholar 

  52. Yan Q, Huang J, Fan T, Zhu H, Muegge K (2003) Lsh, a modulator of CpG methylation, is crucial for normal histone methylation. Embo J 22: 5154–5162

    CAS  PubMed  Google Scholar 

  53. Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260: 1926–1928

    CAS  PubMed  Google Scholar 

  54. Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T (2000) DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 24: 88–91

    CAS  PubMed  Google Scholar 

  55. Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25: 269–277

    Article  CAS  PubMed  Google Scholar 

  56. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25: 338–342

    CAS  PubMed  Google Scholar 

  57. Tatematsu KI, Yamazaki T, Ishikawa F (2000) MBD2-MBD3 complex binds to hemi-methylated DNA and forms a complex containing DNMT1 at the replication foci in late S phase. Genes Cells 5: 677–688

    Article  CAS  PubMed  Google Scholar 

  58. Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277: 1996–2000

    Article  CAS  PubMed  Google Scholar 

  59. Leonhardt H, Page AW, Weier HU, Bestor TH (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71: 865–873

    Article  CAS  PubMed  Google Scholar 

  60. Vertino PM, Sekowski JA, Coll JM, Applegren N, Han S, Hickey RJ, Malkas LH (2002) DNMT1 is a component of a multiprotein DNA replication complex. Cell Cycle 1: 416–423

    CAS  PubMed  Google Scholar 

  61. Liu S, Shen T, Huynh L, Klisovic MI, Rush LJ, Ford JL, Yu J, Becknell B, Li Y, Liu C et al. (2005) Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res 65: 1277–1284

    CAS  PubMed  Google Scholar 

  62. Esteve PO, Chin HG, Pradhan S (2005) Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc Natl Acad Sci USA 102: 1000–1005

    Article  CAS  PubMed  Google Scholar 

  63. Liu Z, Fisher RA (2004) RGS6 interacts with DMAP1 and DNMT1 and inhibits DMAP1 transcriptional repressor activity. J Biol Chem 279: 14120–14128

    CAS  PubMed  Google Scholar 

  64. Fuks F, Hurd PJ, Deplus R, Kouzarides T (2003) The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31: 2305–2312

    Article  CAS  PubMed  Google Scholar 

  65. Xin H, Yoon HG, Singh PB, Wong J, Qin J (2004) Components of a pathway maintaining histone modification and heterochromatin protein 1 binding at the pericentric heterochromatin in Mammalian cells. J Biol Chem 279: 9539–9546

    CAS  PubMed  Google Scholar 

  66. Geiman TM, Sankpal UT, Robertson AK, Chen Y, Mazumdar M, Heale JT, Schmiesing JA, Kim W, Yokomori K, Zhao Y, Robertson KD (2004) Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery. Nucleic Acids Res 32: 2716–2729

    Article  CAS  PubMed  Google Scholar 

  67. Geiman TM, Sankpal UT, Robertson AK, Zhao Y, Zhao Y, Robertson KD (2004) DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochem Biophys Res Commun 318: 544–555

    Article  CAS  PubMed  Google Scholar 

  68. Deplus R, Brenner C, Burgers WA, Putmans P, Kouzarides T, de Launoit Y, Fuks F (2002) Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res 30: 3831–3838

    Article  CAS  PubMed  Google Scholar 

  69. Aapola U, Liiv I, Peterson P (2002) Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res 30: 3602–3608

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

El-Osta, A. (2006). Mechanisms of abnormal gene expression in tumor cells. In: Cancer: Cell Structures, Carcinogens and Genomic Instability. Experientia Supplementum, vol 96. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7378-4_15

Download citation

Publish with us

Policies and ethics