Skip to main content

Invasive plants: the process within wetland ecosystems

  • Chapter
Invasive Plants: Ecological and Agricultural Aspects

Conclusions

Scientific understanding of the competitive capacities of invasive species is critical to effecting prevention, detection and rapid management responses to invasive species introductions. Many of the changes being imposed upon indigenous communities by invasive species offer direct evidence for the capacities of these advantaged plants to compete with native species. In some cases, anthropogenic alterations of environmental parameters, such as changes in atmospheric concentrations of CO2 and related climatic and hydrological changes, have both direct and indirect effects on facilitation of biological invasions [113–117]. Truly effective management skills emerge, however, when the underlying physiological and genetic control mechanisms are understood. In many cases, the inadvertent invasions of exotic species into natural communities provide useful experiments — their rigorous analyses and interpretations can effectively augment controlled experimental analyses at specific biochemical and genetic levels that are so essential to gain needed understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hengeveld R (1989) Dynamics of biological invasions. Chapman and Hall, London, UK

    Google Scholar 

  2. Cronk QCB, Fuller JL (1995) Plant invaders: the threat to natural ecosystems. Chapman and Hall, London, UK

    Google Scholar 

  3. Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84: 468–478

    Google Scholar 

  4. Pimental D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. BioScience 50: 53–63

    Article  Google Scholar 

  5. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T et al. (2000) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosys Environ 4: 1–20

    Google Scholar 

  6. Mack RN, Simberloff D, Lonsdale WM, Evans J, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10: 689–710

    Article  Google Scholar 

  7. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6: 503–523

    Article  CAS  Google Scholar 

  8. Minchin D, Gollasch S (2002) Vectors — How exotics get around. In: E Leppäkoski, S Gollasch, S Olenin, (eds): Invasive aquatic species of Europe. Distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, The Netherlands, 183–192

    Google Scholar 

  9. Mack RN (2003) Plant naturalizations and invasions in the eastern United States: 1634–1860. Ann Missouri Bot Gard 90: 7–90

    Article  Google Scholar 

  10. Mack RN, Erneberg M (2003) The United States naturalized flora: Largely the product of deliberate introductions. Ann Missouri Bot Gard 89: 176–189

    Article  Google Scholar 

  11. Gopal B (1987) Water hyacinth. Elsevier, New York

    Google Scholar 

  12. Cook CDK (1993) Origin, autecology, and spread of some of the world’s most troublesome aquatic weeds. In: AH Pieterse, KJ Murphy (eds): Aquatic weeds: The ecology and management of nuisance aquatic vegetation. Oxford University Press, Oxford, UK, 31–38

    Google Scholar 

  13. Spencer WE, Teeri J, Wetzel RG (1994) Acclimation of photosynthetic phenotype to environmental heterogeneity. Ecology 75: 301–314

    Article  Google Scholar 

  14. Spencer WE, Wetzel RG, Terri J (1996) Photosynthetic phenotype plasticity and the role of phosphoenolpyruvate carboxylase in Hydrilla verticillata. Plant Sci 118: 1–9

    Article  CAS  Google Scholar 

  15. Chornesky EA, Randall JM (2003) The threat of invasive alien species to biological diversity: Setting a future course. Ann Missouri Bot Gard 90: 67–76

    Article  Google Scholar 

  16. MacIsaac HJ (1996) Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. Am Zool 36: 287–299

    Google Scholar 

  17. Strayer DL, Caraco NE, Cole JJ, Findlay S, Pace ML (1999) Transformation of freshwater ecosystems by bivalves. BioScience 49: 19–27

    Article  Google Scholar 

  18. Haas G, Brunke M, Streit B (2002) Fast turnover in dominance of exotic species in the Rhine River determines biodiversity and ecosystem function: An affair between amphipods and mussels. In: E Leppäkoski, S Gollasch, S Olenin (eds): Invasive aquatic species of Europe: distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, The Netherlands, 426–432

    Google Scholar 

  19. Karatayev AY, Burlakova LE, Padilla DK (2002) Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. In: E Leppäkoski, S Gollasch, S Olenin (eds): Invasive aquatic species of Europe: distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, The Netherlands, 433–446

    Google Scholar 

  20. Darwin C (1900) Origin of Species by Means of Natural Selection or the Preservation of Faroured Races in the Struggle for Life. John Murray, London, UK

    Google Scholar 

  21. Williamson M (1989) Mathematical models of invasion. In: JA Drake, HA Mooney, F di Castri, RH Groves, FJ Kruger, M Rejmánek, M Williamson (eds): Biological invasions. John Wiley and Sons, New York, 329–350

    Google Scholar 

  22. Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology. University Press of Hawaii, Honolulu

    Google Scholar 

  23. Pieterse AH (1993) Biological control of aquatic weeds: Introduction to biological control of aquatic weeds. In: AH Pieterse, KJ Murphy (eds): Aquatic weeds: the ecology and management of nuisance aquatic vegetation. Oxford University Press, Oxford, UK, 174–176

    Google Scholar 

  24. Gangstad EO, Cardarelli NF (1993) The relation between aquatic weeds and public health. In: AH Pieterse, KJ Murphy (eds): Aquatic weeds: the ecology and management of nuisance aquatic vegetation. Oxford University Press, Oxford, UK, 85–92

    Google Scholar 

  25. Center TD, Frank JH, Dray FA (1997) Biological control. In: D Simberloff, DC Schmitz, TC Brown (eds): Strangers in paradise. Island Press, Washington, 245

    Google Scholar 

  26. Perrings C (2002) Biological invasions in aquatic systems: The economic problem. Bull Mar Sci 70: 541–552

    Google Scholar 

  27. Sculthorpe CD (1967) The biology of aquatic vascular plants. Arnold, London, UK

    Google Scholar 

  28. Weber DW (1967) Über die Wasserpflanzenflora Ostfalens. Braunschweig Heimat 53: 11–15

    Google Scholar 

  29. Weber-Oldecop DW (1970) Wasserpflanzengesellschaften im Östlichen Niedersachsen. I. Int Revue ges Hydrobiol. 55: 913–967

    Article  Google Scholar 

  30. Weber-Oldecop DW (1971) Wasserpflanzengesellschaften im Östlichen Niedersachsen. II. Int Revue ges Hydrobiol 56: 79–122

    Article  Google Scholar 

  31. Sukopp H (1971) Effects of man, especially recreational activities on littoral macrophytes. Hidrobiologia, Bucuresti 12: 331–340

    Google Scholar 

  32. Sukopp H (1972) Wandel von Flora und Vegetation in Mitteleuropa unter dem Einfluss des Menschen. Berichte über Landwirtschaft 50: 112–139

    Google Scholar 

  33. Parker ED (1973) Ecological comparisons of thermally affected aquatic environments. Wat Poll Contr Fed J 45: 726–733

    CAS  Google Scholar 

  34. Mitchell DS (1974) The effects of excessive aquatic plant populations. In: DS Mitchell (ed.): Aquatic vegetation and its use and control. A contribution to the International Hydrobiological Decade. UNESCO, Paris, France, 50–56

    Google Scholar 

  35. Seabloom EW, Harpole WS, Reichman OJ, Tilman D (2003) Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc Natl Acad Sci USA 100: 13384–13389

    Article  PubMed  CAS  Google Scholar 

  36. Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71: 478–491

    Article  Google Scholar 

  37. Vitousek PM (1990) Biological invasions and ecosystem processes: Towards an integration of population biology and ecosystem studies. Oikos 57: 7–13

    Article  Google Scholar 

  38. Burke MJW, Grime JP (1996) An experimental study of plant community invasibility. Ecology 77: 776–790

    Article  Google Scholar 

  39. Galatowitsch SM, Anderson NO, Ascher PD (1999) Invasiveness in wetland plants in temperate North America. Wetlands 19: 733–755

    Article  Google Scholar 

  40. Pfisterer AB, Joshi J, Schmid B, Fischer M (2004) Rapid decay of diversity-productivity relationships after invasion of experimental plant communities. Basic Appl Ecol 5: 5–14

    Article  Google Scholar 

  41. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. BioScience 48: 607–615

    Article  Google Scholar 

  42. Vila M, Weber W, D’Antonio CM (2000) Conservation implications of invasion by plant hybridization. Biol Inv 2: 207–217

    Article  Google Scholar 

  43. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98: 5446–5451

    Article  PubMed  CAS  Google Scholar 

  44. Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc Royal Soc UK 270: 775–781

    Article  Google Scholar 

  45. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88: 528–534

    Article  Google Scholar 

  46. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17: 170–176

    Article  Google Scholar 

  47. Goldberg DE (1990) Components of resource competition in plant communities. In: JB Grace, D Tilman (eds): Perspectives in plant competition. Academic Press, San Diego, 27–49

    Google Scholar 

  48. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69: 373–386

    Article  Google Scholar 

  49. Callaway RM (1995) Positive interactions among plants. Bot Rev 61: 306–349

    Article  Google Scholar 

  50. Callaway RM, Walker LR (1997) Competition and facilitation: A synthetic approach to interactions in plant communities. Ecology 78: 1958–1965

    Article  Google Scholar 

  51. Eviner VT, Chapin FS (2003) Functional matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Syst 34: 455–485

    Article  Google Scholar 

  52. Hierro JL, Callaway RM (2004) Allelopathy and exotic plant invasion. Plant Soil 256: 29–39

    Article  Google Scholar 

  53. Ehrenfeld JG, Kourtev P, Huang W (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11: 1287–1300

    Article  Google Scholar 

  54. Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol Appl 11: 1301–1310

    Article  Google Scholar 

  55. Mack MC, D’Antonio CM, Ley RE (2001) Alteration of ecosystem nitrogen dynamics by exotic plants: A case study of C4 grasses in Hawaii. Ecol Appl 11: 1323–1335

    Google Scholar 

  56. Scott NA, Saggar S, McIntosh PD (2001) Biogeochemical impact of Hieracium invasion in New Zealand’s grazed tussock grasslands: Sustainability implications. Ecol Appl 11: 1311–1322

    Article  Google Scholar 

  57. Zavaleta E (2000) Valuing ecosystem services lost to Tamarix invasion in the United States. In: HA Mooney, R Hobbs (eds): Invasive species in a changing world. Island Press, Washington DC, 261–300

    Google Scholar 

  58. Grimshaw HJ, Wetzel RG, Brandenburg M, Segerblom K, Wenkert LJ, Marsh GA, Charnetzky C, Haky JE, Carraher C (1997) Shading of periphyton communities by wetland emergent macrophytes: Decoupling of algal photosynthesis from microbial nutrient retention. Arch Hydrobiol 139: 17–27

    CAS  Google Scholar 

  59. Ervin GN, Wetzel RG (2002) Influence of a dominant macrophyte, Juncus effuses, on wetland plant species richness, diversity, and community composition. Oecologia 130: 626–636

    Article  Google Scholar 

  60. Hershock C (2002) Plant community structure in calcareous fens: effects of competition, soil environment, and clonal architecture. Ph.D. Dissertation, University of Michigan, Ann Arbor

    Google Scholar 

  61. Rajaniemi TK, Allison, VJ, Goldberg DE (2003) Root competition can cause a decline in diversity with increased productivity. J Ecol 91: 407–416

    Article  Google Scholar 

  62. Hodge A (2000) Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiol Ecol 32: 91–96

    Article  PubMed  CAS  Google Scholar 

  63. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52: 527–560

    Article  PubMed  CAS  Google Scholar 

  64. de Ascensao ARFDC, Dubery A (2003) Soluble and wall-bound phenolics and phenolic polymers in Musa acuminate roots exposed to elicitors from Fusarium oxysporum f. sp. cubense. Phytochemistry 63: 679–686

    Article  PubMed  CAS  Google Scholar 

  65. Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ et al. (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54: 731–739

    Article  Google Scholar 

  66. Tuchman NC, Wetzel RG, Rier ST, Wahtera KA, Teeri JA (2002) Elevated atmospheric CO2 lowers leaf litter nutritional quality for stream ecosystem food webs. Global Change Biol 8: 163–170

    Article  Google Scholar 

  67. Wetzel RG (2003) Dissolved organic carbon: Detrital energetics, metabolic regulators, and drivers of ecosystem stability of aquatic ecosystems. In: S Findlay, R Sinsabaugh (eds): Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, San Diego, 455–477

    Google Scholar 

  68. Wetzel RG, Tuchman NC (2005) Effects of atmospheric CO2 enrichment on the production of plant degradation products and their natural photodegradation and biological utilization. Arch Hydrobiol 178: 1–22

    Google Scholar 

  69. Cardon G, Hungate BA, Cambardella CA, Chapin III FS, Field CB, Holland EA, Mooney HA (2001) Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biol Biochem 33: 365–373

    Article  CAS  Google Scholar 

  70. Hodge A, Paterson E, Grayston SJ, Campbell CD, Ord BG, Killham K (1998) Characterisation and microbial utilisation of exudate material from the rhizosphere of Lolium perenne grown under CO2 enrichment. Soil Biol Biochem 30: 1033–1043

    Article  CAS  Google Scholar 

  71. Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biol 5: 781–789

    Article  Google Scholar 

  72. Rillig MC, Scow KM, Klironomos JN, Allen MF (1997) Microbial carbon-substrate utilization in the rhizosphere of Gutierrezia sarothrae grown in elevated atmospheric carbon dioxide. Soil Biol Biochem 29: 1387–1394

    Article  CAS  Google Scholar 

  73. Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil: Review. J Plant Nutr Soil Sci 163: 421–431

    Article  CAS  Google Scholar 

  74. Grace, JB, Wetzel RG (1981) Habitat partitioning and competitive displacement in cattails (Typha): Experimental field studies of the intensity of competition. Am Nat 118: 463–474

    Article  Google Scholar 

  75. Grace JB, Wetzel RG (1981b) Phenotypic and genotypic components of growth and reproduction in Typha latifolia: Experimental studies in marshes of differing successional maturity. Ecology 62: 789–801

    Article  Google Scholar 

  76. Grace JB, Wetzel RG (1981) Effects of size and growth rate on vegetative reproduction in Typha. Oecologia 50: 158–161

    Article  Google Scholar 

  77. Grace JB, Wetzel RG (1982) Variations in growth and reproduction within populations of two rhizomatous plant species: Typha latifolia and Typha angustifolia. Oecologia 53: 258–263

    Article  Google Scholar 

  78. Grace JB, Wetzel RG (1982) Niche differentiation between two rhizomatous plant species: Typha latifolia and Typha angustifolia. Can J Bot 60: 46–57

    Article  Google Scholar 

  79. Dickerman JA, Wetzel RG (1985) Clonal growth in Typha latifolia: Population dynamics and demography of the ramets. J Ecol 73: 535–552

    Article  Google Scholar 

  80. Wetzel RG, Howe MJ (1999) Maximizing production in a herbaceous perennial aquatic plant by continuous growth and synchronizing population dynamics. Aquat Bot 64: 111–129

    Article  Google Scholar 

  81. Kuehn KA, Suberkropp K (1998) Decomposition of standing litter of the freshwater macrophyte Juncus effuses L. Freshwat Biol 40: 717–727

    Article  Google Scholar 

  82. Kuehn KA, Suberkropp K (1998) Diel fluctuations in microbial activity associated with standing dead leaf litter of the emergent macrophyte Juncus effuses. Aquat Microb Ecol 14: 171–182

    Article  Google Scholar 

  83. Kuehn KA, Gessner MO, Wetzel RG, Suberkropp K (1999) Decomposition and CO2 evolution from standing litter of the emergent macrophyte Erianthus giganteus. Microb Ecol 38: 50–57

    Article  PubMed  CAS  Google Scholar 

  84. Mann CJ, Wetzel RG (1996) Loading and bacterial utilization of dissolved organic carbon from emergent macrophytes. Aquat Bot 53: 61–72

    Article  Google Scholar 

  85. Mann CJ, Wetzel RG (2000) Effects of the emergent macrophyte Juncus effusus L. on the chemical composition of interstitial water and bacterial productivity. Biogeochemistry 48: 307–322

    Article  CAS  Google Scholar 

  86. Komínková D, Kuehn KA, Büsing N, Steiner D, Gessner MO (2000) Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a large lake. Aquat Microb Ecol 22: 271–282

    Article  Google Scholar 

  87. Kuehn KA, Lemke MJ, Suberkropp K, Wetzel RG (2000) Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnol Oceanogr 45: 862–870

    Article  CAS  Google Scholar 

  88. Carlton RG, Wetzel RG (1988) Phosphorus flux from lake sediments: Effect of epipelic algal photosynthesis. Limnol Oceanogr 33: 562–570

    Article  CAS  Google Scholar 

  89. Kelderman P, Lindeboom HJ, Klein J (1988) Light dependent sediment-water exchange of dissolved reactive phosphorus and silicon in a producing microflora mat. Hydrobiologia 159: 137–147

    Article  CAS  Google Scholar 

  90. Hansson LA (1989) The influence of a periphytic biolayer on phosphorus exchange between substrate and water. Arch Hydrobiol 115: 21–26

    CAS  Google Scholar 

  91. Atkinson RB, Cairns J Jr, (2001) Plant decomposition and litter accumulation in depressional wetlands: Functional performance of two wetland age classes that were created via excavation. Wetlands 21: 354–362

    Article  Google Scholar 

  92. Grace JB, Wetzel RG (1978) The production biology of Eurasian Watermilfoil (Myriophyllum spicatum L.): a review. J Aquat Plant Manage 16: 1–11

    Google Scholar 

  93. Barko JW, Smart RM (1981) Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecol Monogr 51: 219–235

    Article  Google Scholar 

  94. Erwin GN, Wetzel RG (2003) An ecological perspective of allelochemical interference on landwater interface communities. Plant Soil 256: 13–28

    Article  Google Scholar 

  95. Van TK, Wheeler GS, Center TD (1998) Competitive interactions between Hydrilla (Hydrilla verticillata) and Vallisneria (Vallisneria americana) as influenced by insect herbivory. Biol Cont 11: 185–192

    Article  Google Scholar 

  96. Grace JB (1993) The adaptive significance of clonal reproduction in angiosperms: An aquatic perspective. Aquat Bot 44: 159–180

    Article  Google Scholar 

  97. Smith DH, Madsen JD, Dickson KL, Beitinger TL (2002) Nutrient effects on autofragmentation of Myriophyllum spicatum. Aquat Bot 74: 1–17

    Article  CAS  Google Scholar 

  98. Gross EM (1999) Allelopathy in benthic and littoral areas: case studies on allelochemicals from benthic cyanobacteria and submersed macrophytes. In: Inderjit, KMM Dakshini, CL Foy (eds): Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, FL, 179–199

    Google Scholar 

  99. Toong YC, Schooley DA, Baker FC (1988) Isolation of insect juvenile hormone III from a plant. Nature 333: 170–171

    Article  CAS  Google Scholar 

  100. Bede JC, Goodman WG, Tobe SS (1999) Developmental distribution of insect juvenile hormone III in the sedge, Cyperus iria L. Phytochemistry 52: 1269–1274

    Article  CAS  Google Scholar 

  101. Bede JC, Teal P, Tobe SS (1999) Production of insect juvenile hormone III and its precursors in cell suspension cultures of the sedge, Cyperus iria L. Plant Cell Rep 19: 20–25

    Article  Google Scholar 

  102. Bede JC, Tobe SS (2000) Activity of insect juvenile hormone III: Seed germination and seedling growth studies. Chemoecology 10: 89–97

    Article  CAS  Google Scholar 

  103. Siemens DH, Garner SH, Mitchell-Olds T, Callaway RM (2002) Cost of defense in the context Invasive plants: the process within wetland ecosystems 127 of plant competition: Brassica rapa may grow and defend. Ecology 83: 505–517

    Google Scholar 

  104. Wium-Andersen S (1987) Allelopathy among aquatic plants. Arch Hydrobiol 27: 167–172

    Google Scholar 

  105. Wilson DM, Fenical W, Hay M, Lindquist N, Bolser R (1999) Habenariol, a freshwater feeding deterrent from the aquatic orchid Haberaria repens (Orchidaceae). Phytochemistry 50: 1333–1336

    Article  CAS  Google Scholar 

  106. Kubanek J, Fenical W, Hay ME, Brown PJ, Lindquist N (2000) Two antifeedant lignans from the freshwater macrophyte Saururus cernuus. Phytochemistry 54: 281–287

    Article  PubMed  CAS  Google Scholar 

  107. Newman RM, Kerfoot WC, Hanscom III Z (1990) Watercress and amphipods: Potential chemical defenses in a spring stream macrophyte. J Chem Ecol 16: 245–259

    Article  CAS  Google Scholar 

  108. Newman RM, Hanscom III Z, Kerfoot WC (1992) The watercress glucosinolate-myrosinase system: A feeding deterrent to caddis flies, snails, and amphipods. Oecologia 92: 1–7

    Article  Google Scholar 

  109. Newman RM, Kerfoot WC, Hanscom III Z (1996) Watercress allelochemical defends high-nitrogen foliage against consumption: Effects on freshwater invertebrate herbivores. Ecology 77: 2312–2323

    Article  Google Scholar 

  110. Lodge DM (1991) Herbivory on freshwater macrophytes. Aquat Bot 41: 195–224

    Article  Google Scholar 

  111. Newman RM (1991) Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J N Am Benthol Soc 10: 89–114

    Article  Google Scholar 

  112. Cornell HV, Hawkins BA (2003) Herbivore responses to plant secondary compounds: A test of phytochemical coevolution theory. Am Nat 161: 507–522

    Article  PubMed  Google Scholar 

  113. Elton CS (1958) The ecology of invasions by animals and plants. Univ. Chicago Press, Chicago

    Google Scholar 

  114. Berntson GM, Bazzaz FA (1996) Belowground positive and negative feedbacks on CO2 enhancement. Plant Soil 187: 119–131

    Article  CAS  Google Scholar 

  115. Van Noordwijk M, Martikainen, P, Bottner P, Cuevas E, Rouland C, Dhillion SS (1998) Global change and root function. Global Change Biol 4: 759–772

    Article  Google Scholar 

  116. Wetzel RG (2001) Limnology: lake and river ecosystems. 3rd Edition. Academic Press, San Diego

    Google Scholar 

  117. Weltzin JF, Belote RT, Sanders NJ (2003) Biological invaders in a greenhouse world: Will elevated CO2 fuel plant invasions? Front Ecol Environ 1: 146–153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Wetzel, R.G. (2005). Invasive plants: the process within wetland ecosystems. In: Inderjit (eds) Invasive Plants: Ecological and Agricultural Aspects. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7380-6_7

Download citation

Publish with us

Policies and ethics