Skip to main content

An Inverse Problem for a Phase-field Model in Sobolev Spaces

  • Chapter
Nonlinear Elliptic and Parabolic Problems

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 64))

Abstract

We prove an existence and uniqueness result for an inverse problem arising from a phase-field model with two memory kernels. More precisely, we identify the convolution memory kernels and the diffusion coefficient besides the temperature and the phase-field parameter. We prove our results in the framework of Sobolev spaces. Our fundamental tools are an optimal regularity result in the Lp spaces and fixed point arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Adams, Sobolev spaces, Pure and Applied Mathematics, vol. 65, Plenum Press (1975).

    Google Scholar 

  2. G. Bonfanti, F. Luterotti, Global solution to a phase-field model with memory and quadratic nonlinearity, Adv. Math. Sci. Appl., 9 (1999), 523–538.

    MathSciNet  Google Scholar 

  3. G. Bonfanti, F. Luterotti, Regularity and convergence results for a phase-field model with memory, Math. Meth. Appl. Sci., 21 (1998), 1085–1105.

    Article  MathSciNet  Google Scholar 

  4. M. Brokate, J. Sprekel, Hysteresis and Phase Transition, Springer, New York, 1996.

    Google Scholar 

  5. D. Brandon, W.J. Hrusa, Construction of a class of integral models for heat flow in materials with memory, J. Integral Equations and Appl., 1 (1998), 175–201.

    MathSciNet  Google Scholar 

  6. G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205–245.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase field equations, Phys. Rev. A, 39 (1989), 5887–5896.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Caginalp, The dynamics of a conserved phase-field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits, IMA J. Appl. Math., 44 (1990), 77–94.

    MATH  MathSciNet  Google Scholar 

  9. G. Caginalp, X. Chen, Convergence of the phase field model to its sharp interface limits, European Journal of Applied Mathematics, 9 (1998), 417–445.

    Article  MathSciNet  Google Scholar 

  10. [10] G. Caginalp, X. Chen, Phase field equations in the singular limit of sharp interface problems, in: M. Gurtin and G.B. McFadden (eds.), On the Evolution of Phase Boundaries, IMA Volume of Mathematics and Its Applications, 43 (1992), 1–28, Springer-Verlag.

    Google Scholar 

  11. B.D. Coleman, M.E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199–208.

    MathSciNet  Google Scholar 

  12. P. Colli, g. Gilardi, M. Graselli, Global smooth solution to the standard phase field models with memory, Adv. Differential Equations, 2 (1997), 453–486.

    MathSciNet  Google Scholar 

  13. P. Colli, G. Gilardi, M. Grasselli, Well-posedness of the weak formulation for the phase field models with memory, Adv. Differential Equations, 2 (1997), 487–508.

    MathSciNet  Google Scholar 

  14. F. Colombo, Direct and inverse problems for a phase-field model with memory, J. Math. Anal. Appl., 260 (2001), 517–545.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Colombo, D. Guidetti, V. Vespri, An inverse parabolic problem for a phase-field model for boundary measurements of the temperature, preprint.

    Google Scholar 

  16. C. Giorgi, M. Grasselli, V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana Univ. Math. J., 48 (1999), 1395–1445.

    Article  MathSciNet  Google Scholar 

  17. M. Grasselli, V. Pata, F.M. Vegni, Longterm dynamics of a conserved phase-field system with memory, Asymp. Analysis, 33 (2003), 261–320.

    MathSciNet  Google Scholar 

  18. R. Denk, M. Hieber, J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, preprint: Technische Universität Darmstadt, n. 2156 (2001).

    Google Scholar 

  19. D. Guidetti, On interpolation with boundary conditions, Math. Zeit., 207 (1991), 439–460.

    MATH  MathSciNet  Google Scholar 

  20. D. Guidetti, A. Lorenzi, A mixed identification problem related to a phase-field model with memory, preprint.

    Google Scholar 

  21. A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser (1995).

    Google Scholar 

  22. A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modeling perspectives, Adv. Math. Sci. Appl., 8 (1998), 965–985.

    MATH  MathSciNet  Google Scholar 

  23. A. Novick-Cohen, Conserved phase-field equations with memory, in Curvature Flows and related Topics, 1994, GAKUTO Internat. Ser. Math. Sci. Appl., Vol 5, Gakkōtosho, Tokyo, 1995, pp. 179–197.

    Google Scholar 

  24. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

    Google Scholar 

  25. E. Sinestrari, On the Cauchy problem in spaces of continuous functions, J. Math. Anal. Appl., 107 (1985), 16–66.

    Article  MATH  MathSciNet  Google Scholar 

  26. H.B. Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc., 199 (1974), 141–162.

    MATH  MathSciNet  Google Scholar 

  27. H. Triebel, Theory of functions spaces, Monogra. Math., Birkhäuser (1983).

    Google Scholar 

  28. H. Triebel: Interpolation theory, function spaces, differential operators, North Holland, Amsterdam, New York, Oxford, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Colombo, F., Guidetti, D. (2005). An Inverse Problem for a Phase-field Model in Sobolev Spaces. In: Brezis, H., Chipot, M., Escher, J. (eds) Nonlinear Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 64. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7385-7_10

Download citation

Publish with us

Policies and ethics