Skip to main content

Decay and Global Existence for Nonlinear Wave Equations with Localized Dissipations in General Exterior Domains

  • Chapter
New Trends in the Theory of Hyperbolic Equations

Part of the book series: Operator Theory: Advances and Applications ((APDE,volume 159))

Abstract

In this article we consider the initial-boundary value problem for linear and nonlinear wave equations in an exterior domain Ω in RN with the homogeneous Dirichlet boundary condition. Under the effect of localized dissipation like a(x)ut we derive both of local and total energy decay estimates for the linear wave equation and apply these to the existence problem of global solutions of semilinear and quasilinear wave equations. We make no geometric condition on the shape of the boundary Ω.

The dissipation a(x)ut is intended to be as weak as possible, and if the obstacle V = RN ∖ Ω is star-shaped our results based on local energy decay hold even if a(x) ≡ 0, while for the results concerning the total energy decay we need a(x) ≥ ɛ0 > 0 near ∞.

In the final section we consider the wave equation with a ‘half-linear’ dissipation σ(x, ut) which is like a(x)|ut|rut in a bounded area and which is linear like a(x)ut near ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Aloui and M. Khenissi, Stabilization for the wave equation on exterior domains, Carleman Estimates and Applications to Uniqueness and Control Theory, F. Colombini and C. Zuily ed., Birkhäuser (2001), 1–13.

    Google Scholar 

  2. J. J. Bae and M. Nakao, Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains, Dis. Cont. Dyn. Syst., to appear.

    Google Scholar 

  3. G. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), 1024–1065

    Article  MathSciNet  Google Scholar 

  4. C. O. Bloom and N. D. Kazarinoff, Local energy decay for a class of the non star-shaped bodies, Arch. Ration. Mech. Anal. 55 (1975), 73–85.

    MathSciNet  Google Scholar 

  5. P. Brenner, On LpLp′ estimates for the wave equation, Math. Z. 177 (1981), 323–340.

    MathSciNet  Google Scholar 

  6. G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl., 58 (1979), 249–274.

    MATH  MathSciNet  Google Scholar 

  7. W. Dan and Y. Shibata, On a local energy decay of solutions of a dissipative wave equation, Funkcial. Ekvac. 38 (1995), 545–568

    MathSciNet  Google Scholar 

  8. A. Friedman, Partial differential equations, New York etc.: Holt, Rinehart & Winston, Inc. 262 p, 1969

    Google Scholar 

  9. V. Georgiev, Semilinear Hyperbolic Equations, MSJ Memoirs. 7. Tokyo, Mathematical Society of Japan. 208 p.

    Google Scholar 

  10. N. Hayashi, Asymptotic behavior in time of small solutions to nonlinear wave equations in an exterior domain, Comm. Partial Differential Equations 25 (2000), 423–456.

    MATH  MathSciNet  Google Scholar 

  11. A. Hoshiga, The asymptotic behaviour of the radially symmetric solutions to quasilinear wave equations in two space dimensions, Hokkaido Math. J. 24 (1995), 575–615.

    MATH  MathSciNet  Google Scholar 

  12. M. Ikawa, Decay of solutions of the wave equation in the exterior of two convex bodies, Osaka J. Math. 19 1982, 459–509

    MATH  MathSciNet  Google Scholar 

  13. M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier (Grenoble) 38 (1988), 113–146

    MATH  MathSciNet  Google Scholar 

  14. R. Ikehata, Energy decay of solutions for the semilinear dissipative wave equations in an exterior domain, Funkcial. Ekvac. 44 (2001), 487–499

    MATH  MathSciNet  Google Scholar 

  15. N. Iwasaki, Local decay of solutions for symmetric hyperbolic systems with dissipative and coercive boundary conditions in exterior domains, Publ. Res. Inst. Math. Sci. 5 (1969), 193–218.

    MATH  MathSciNet  Google Scholar 

  16. F. John, Nonlinear Wave Equations, Formation of Singularities, Revised notes of the 7th annual Pitcher Lectures delivered at Lehigh University, Bethlehem, PA, USA in April 1989, University Lecture Series, 2. Providence, RI: American Mathematical Society (AMS), 80 p, 1990.

    Google Scholar 

  17. T. Kato, Abstract differential equations and nonlinear mixed problems. (Based on the Fermi Lectures held May 1985 at Scuola Normale Superiore, Pisa), Lezioni Fermiane. Pisa: Accademie Nazionale dei Lincei. Scuola Normale Superiore, 87 p, 1988.

    Google Scholar 

  18. M. Keel, H. Smith and C.D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains, J. Funct. Anal., 189 (2002), 155–226.

    Article  MathSciNet  Google Scholar 

  19. M. Keel, H. Smith and C.D. Sogge, Almost global existence for some semilinear wave equation, J. Anal. Math. 87 (2002), 265–279.

    MathSciNet  Google Scholar 

  20. M. Keel, H. Smith and C.D. Sogge, Almost global existence for quasilinear wave equations in three space dimensions, J. Amer. Math. Soc. 17 (2004), 109–153.

    Article  MathSciNet  Google Scholar 

  21. S. Klainerman and G. Ponce, Global small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 36 (1983), 133–141.

    MathSciNet  Google Scholar 

  22. V. Komornik, Exact controllability and stabilization. The multiplier method., Research in Applied Mathematics. 36. Chichester: Wiley. Paris: Masson. viii, 156 p, 1994.

    Google Scholar 

  23. P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys. 5 (1964), 61–613.

    Article  MathSciNet  Google Scholar 

  24. I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometric conditions, Appl. Math. Optim. 25 (1992) 189–224

    Article  MathSciNet  Google Scholar 

  25. J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1: Contrôlabilité exacte. (Exact controllability, perturbations and stabilization of distributed systems. Vol. 1: Exact controllability), Recherches en Mathématiques Appliquées, 8. Paris etc.: Masson. x, 538 p, 1988.

    Google Scholar 

  26. J. L. Lions and W. A. Strauss, Some non-linear evolution equations, Bull. Soc. Math. France 93 (1965), 43–96.

    MathSciNet  Google Scholar 

  27. P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut. 12 (1999), 251–283.

    MATH  MathSciNet  Google Scholar 

  28. A. Matsumura, Global existence and asymptotics of the solutions of the second order quasi-linear hyperbolic equations with the first order dissipation, Publ. Res. Inst. Math. Sci. 13 (1977), 349–379.

    MATH  MathSciNet  Google Scholar 

  29. T. Matsuyama, Asymptotics for the nonlinear dissipative wave equation, Trans. Amer. Math. Soc. 355 (2003), 865–899.

    Article  MATH  MathSciNet  Google Scholar 

  30. N. Meyers and J. Serrin, The exterior Dirichlet problem for second order elliptic differential equations, J. Math. Mech. 9 (1960), 513–588.

    MathSciNet  Google Scholar 

  31. K. Mochizuki, Global existence and energy decay of small solutions for the Kirchhoff equation with linear dissipation localized near infinity, J. Math. Kyoto Univ. 39 (1999), 347–364.

    MATH  MathSciNet  Google Scholar 

  32. K. Mochizuki and T. Motai, The scattering theory for the nonlinear wave equation with small data, J. Math. Kyoto Univ. 25 (1985), 703–715.

    MathSciNet  Google Scholar 

  33. K. Mochizuki and T. Motai, On energy decay-nondecay problems for the wave equations with nonlinear dissipative term in RN, J. Math. Soc. Japan 47 (1995), 405–421.

    MathSciNet  Google Scholar 

  34. K. Mochizuki and H. Nakazawa, Energy decay of solutions to the wave equations with linear dissipation localized near infinity, Publ. Res. Inst. Math. Sci. 37 (2001), 441–458.

    MathSciNet  Google Scholar 

  35. C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math. 19 (1966), 439–444.

    MATH  MathSciNet  Google Scholar 

  36. M. Nakao, A difference inequality and its applications to nonlinear evolution equations, J. Math. Soc. Japan 30 (1978), 747–762.

    MATH  MathSciNet  Google Scholar 

  37. M. Nakao, Energy decay of the wave equation with a nonlinear dissipative term, Funkcial. Ekvac. 26 (1983), 237–250.

    MATH  MathSciNet  Google Scholar 

  38. M. Nakao, Existence of global smooth solutions to the initial-boundary value problem for the quasilinear wave equation with a degenerate dissipative term, J. Differential Equations 98 (1992), 299–327.

    Article  MATH  MathSciNet  Google Scholar 

  39. M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann. 305 (1996), 403–417.

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Nakao, Stabilization of local energy in an exterior domain for the wave equation with a localized dissipation, J. Differential Equations 148 (1998), 388–406.

    Article  MATH  MathSciNet  Google Scholar 

  41. M. Nakao, Decay of solutions to the Cauchy problem for the Klein-Gordon equation with a localized nonlinear dissipation, Hokkaido Math. J. 27 (1998), 245–271.

    MATH  MathSciNet  Google Scholar 

  42. M. Nakao, Global existence of smooth solutions to the initial-boundary value problem for the quasilinear wave equation with a localized degenerate dissipation, Nonlinear Anal. TMA. 39 (2000), 187–205.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Nakao, Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations, Math. Z. 238 (2001), 781–797.

    Article  MATH  MathSciNet  Google Scholar 

  44. M. Nakao, Lpestimates for the wave equation and global solutions of semilinear wave equations in exterior domains, Math. Ann. 320 (2001), 11–31.

    Article  MATH  MathSciNet  Google Scholar 

  45. M. Nakao, Global existence of the smooth solutions to the initial boundary value problem for the quasilinear wave equations in exterior domains, J. Math. Soc. Japan 35 (2003), 765–795.

    MathSciNet  Google Scholar 

  46. M. Nakao, Global and periodic solutions for nonlinear wave equations with some localized nonlinear dissipation, J. Differential Equations 190 (2003), 81–107.

    Article  MATH  MathSciNet  Google Scholar 

  47. M. Nakao and Il Hyo Jung, Energy decay for the wave equation with a half-linear dissipation in exterior domains, Differential Integral Equations 16 (2003), 927–948.

    MathSciNet  Google Scholar 

  48. M. Nakao and K. Ono, Global existence to the Cauchy problem for the semilinear dissipative wave equations, Math. Z. 214 (1993), 325–342.

    MathSciNet  Google Scholar 

  49. M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation, Funkcial. Ekvac. 38 (1995), 417–431.

    MathSciNet  Google Scholar 

  50. T. Narazaki, LpLqestimates for damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan 56 (2004), 587–626

    MathSciNet  Google Scholar 

  51. K. Nishihara, LpLqestimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z. 244 (2003), 631–649.

    MATH  MathSciNet  Google Scholar 

  52. K. Ono, The time decay to the Cauchy problem for semilinear dissipative wave equations, Adv. Math. Sci. Appl. 9 (1999), 243–262.

    MATH  MathSciNet  Google Scholar 

  53. K. Ono, Decay estimates for dissipative wave equations in exterior domains, J. Math. Anal. Appl. 286 (2003), 540–562.

    Article  MATH  MathSciNet  Google Scholar 

  54. H. Pecher, Lp-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen I, Math. Z. 150 (1976), 159–183.

    Article  MATH  MathSciNet  Google Scholar 

  55. M.H. Protter, New boundary value problems for the wave equations of mixed type, J. Ration. Mech. Anal. 3 (1954), 435–446; Asymptot. Anal. 3 (1990), 105–132.

    MATH  MathSciNet  Google Scholar 

  56. R. Racke, Lp-Lq-estimates for solutions to the equations of linear thermoelasticity in exterior domains, Asymptot. Anal. 3 (1990) 105–132.

    MATH  MathSciNet  Google Scholar 

  57. R. Racke, Generalized Fourier transforms and global, small solutions to Kirchhoff equations, Appl. Anal. 58 (1995), 85–100.

    MATH  MathSciNet  Google Scholar 

  58. J. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math. 22 (1969), 807–823.

    MATH  MathSciNet  Google Scholar 

  59. D. L. Russel, Exact boundary value controllability theorems for wave and heat processes in star-complemented regions, Differ. Games Control Theory, Proc. Conf. Kingston 1973, 291–319.

    Google Scholar 

  60. J. Serrin, G. Todorova and E. Vitillaro, Existence for a nonlinear wave equation with damping and source terms, Differential Integral Equations 16 (2003), 13–50.

    MathSciNet  Google Scholar 

  61. J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations 46 (1982), 409–425.

    Article  MATH  MathSciNet  Google Scholar 

  62. Y. Shibata, On the global existence theorem of classical solutions of second-order fully nonlinear hyperbolic equations with first order dissipation in the exterior domain, Tsukuba J. Math. 7 (1983), 1–68.

    MATH  MathSciNet  Google Scholar 

  63. Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z. 191 (1986), 165–199.

    Article  MathSciNet  Google Scholar 

  64. Y. Shibata and S. Zheng, On some nonlinear hyperbolic system with damping boundary condition, Nonlinear Analysis TMA 17 (1991) 233–266.

    Article  MathSciNet  Google Scholar 

  65. H. F. Smith and C. D. Sogge, On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc. 8,2 (1995), 879–916.

    MathSciNet  Google Scholar 

  66. D. Tataru, The X s θ spaces and unique continuation for solutions to the semilinear wave equation, Comm. Partial Differential Equations 21 (1996), 841–887.

    MATH  MathSciNet  Google Scholar 

  67. L. R. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations 145 (1998), 502–524.

    MATH  MathSciNet  Google Scholar 

  68. G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2000), 464–489.

    MathSciNet  Google Scholar 

  69. T. Yamazaki, Global solvability for quasilinear hyperbolic equation of Kirchhoff type in exterior domains of dimension larger than three, Math. Methods Appl. Sci., to appear.

    Google Scholar 

  70. E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations 15 (1990), 205–235.

    MATH  MathSciNet  Google Scholar 

  71. E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl. 70 (1991), 513–529.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Nakao, M. (2005). Decay and Global Existence for Nonlinear Wave Equations with Localized Dissipations in General Exterior Domains. In: Reissig, M., Schulze, BW. (eds) New Trends in the Theory of Hyperbolic Equations. Operator Theory: Advances and Applications, vol 159. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7386-5_3

Download citation

Publish with us

Policies and ethics