Skip to main content

Algebraic Multiplicity and the Poincaré Problem

  • Conference paper
Differential Equations with Symbolic Computation

Part of the book series: Trends in Mathematics ((TM))

  • 1087 Accesses

Abstract

In this paper we derive an upper bound for the degree of the strict invariant algebraic curve of a polynomial system in the complex project plane under generic condition. The results are obtained through the algebraic multiplicities of the system at the singular points. A method for computing the algebraic multiplicity using Newton polygon is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. D. Bruno, Local Methods in Nonlinear Differential Equations, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  2. M. M. Carnicer, The Poincaré problem in the nondicritical case, Ann. Math. 140 (1994), 289–294.

    MATH  MathSciNet  Google Scholar 

  3. D. Cerveau and A. Lins Neto, Holomorphic foliations in CP(2) having an invariant algebraic curve, Ann. Inst. Fourier 41 (1991), 883–903.

    MathSciNet  Google Scholar 

  4. A. Campillo and M. M. Carnicer, Proximity inequalities and bounds for the degree of invariant curves by foliations of ℙ 2 , Trans. Amer. Math. Soc. 349(6) (1997), 2211–2228.

    Article  MathSciNet  Google Scholar 

  5. L. Cairó, H. Giacomini and J. Llibre, Liouvillan first integrals for the planar Lotka-Volterra system, Rendiconti del Circolo Matematico di Palermo 52 (2003), 389–418.

    Google Scholar 

  6. N. G. Chebotarev, Theory of Algebraic Functions, Higher Education Press, Beijing, 1956 (in Chinese, translated from Russian by Dingzhong Xia and Zhizhong Dai).

    Google Scholar 

  7. J. Lei and K. Guan, Analytic expansion of solution passing singular point of second order polynomial system, Chinese Ann. Math. Ser. A 22A(5) (2001), 571–576 (in Chinese).

    MathSciNet  Google Scholar 

  8. J. M. Ollagnier, About a conjecture on quadratic vector fields, J. Pure and Applied Algebra 165 (2001), 227–234.

    MATH  MathSciNet  Google Scholar 

  9. J. M. Ollagnier, Liouvillian integration of the Lotka-Volterra system, Qualitative Theory of Dynamical Systems 2 (2001), 307–358.

    MathSciNet  Google Scholar 

  10. J. V. Pereira, Vector fields, invariant varieties and linear systems, Ann. Inst. Fourier (Grenoble) 51(5) (2001), 1385–1405.

    MATH  MathSciNet  Google Scholar 

  11. D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial vector fields, Bifurcations and Periodic Orbits of Vector Fields (D. Schlomiuk, ed.), Kluwer Academic, Dordrecht, 1993, pp. 429–467.

    Google Scholar 

  12. S. Walcher, On the Poincaré problem, J. Diff. Eqns. 166 (2000), 51–78. doi: 10.1006/jdeq.2000.3801

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Lei, J., Yang, L. (2005). Algebraic Multiplicity and the Poincaré Problem. In: Wang, D., Zheng, Z. (eds) Differential Equations with Symbolic Computation. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7429-2_9

Download citation

Publish with us

Policies and ethics