Skip to main content

Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 103

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 103))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acevedo F, Lundahl P. Fröman G (1981) The steriospecific d-glucose transport protein in cholate extracts of human erythrocyte membranes. Biochim Biophys Acta 648:254–262

    PubMed  Google Scholar 

  • Andersen OS, Bjerrum PJ, Borders CL, Broda T, Wieth JO (1983) Essential carboxyl groups in the anion exchange protein of human red blood cell membranes. Biophys J 41:164a

    Google Scholar 

  • Appell KC, Low PS (1981) Partial structural characterization of the cytoplasmic domain of the erythrocyte membrane protein, band 3. J Biol Chem 256:11104–11111

    PubMed  Google Scholar 

  • Appell KC, Low PS (1982) Evaluation of structural independence of membranespanning and cytoplasmic domains of band 3. Biochemistry 21:2151–2157

    PubMed  Google Scholar 

  • Baldwin SA, Baldwin JM, Gorga FR, Lienhard GE (1979) Purification of the cytochalasin B binding component of the human erythrocyte monosaccharide transport system. Biochim Biophys Acta 552:183–188

    PubMed  Google Scholar 

  • Barzilay M, Cabantchik ZI (1979a) Anion transport in red blood cells II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids. Membr Biochem 2:255–281

    PubMed  Google Scholar 

  • Barzilay M, Cabantchik ZI (1979b) Anion transport in red blood cells III. Sites and sidedness of inhibition by high affinity reversibly binding probes. Membr Biochem 2:297–322

    PubMed  Google Scholar 

  • Barzilay M, Ship S, Cabantchik ZI (1979) Anion transport in red blood cells I. Chemical properties of anion recognition sites as revealed by structure-activity relationships of aromatic sulfonic acids. Membr Biochem 2:227–254

    PubMed  Google Scholar 

  • Beigel M, Loyter A (1983) Fusion-mediated implantation of band 3 into living cells. A new system to study degradation of membrane protein. Exp Cell Res 148:95–103

    Article  PubMed  Google Scholar 

  • Bennett V, Stenbuck PJ (1979) The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature 280:468–473

    PubMed  Google Scholar 

  • Bennett V, Stenbuck PJ (1980) Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. J Biol Chem 255:6424–6432

    PubMed  Google Scholar 

  • Bentley PJ, McGahan MC (1980) Inhibitory action of DIDS on chloride transport across the amphibian cornea. J Physiol 304:519–527

    PubMed  Google Scholar 

  • Bentley PJ, McGahan MC (1982) A pharmacological analysis of chloride transport across the amphibian cornea. J Physiol 325:481–492

    PubMed  Google Scholar 

  • Benz R, Tosteson MT, Schubert D (1984) Formation and properties of tetramers of band 3 protein from human erythrocyte membranes in planar lipid bilayers. Biochem Biophys Acta 775:347–355

    PubMed  Google Scholar 

  • Berghout A, Raida M, Romano L, Passow H (1984) Inverse effects of dansylation of the red blood cell on band 3-mediated transport of monovalent and divalent anions. Hoppe Seyler's Z Physiol Chem 365:226

    Google Scholar 

  • Berghout A, Raida M, Romano L, Passow H (1985) pH dependence of phosphate transport across the red blood cell membrane after modification by dansyl chloride. Biochim Biophys Acta 815:281–286

    PubMed  Google Scholar 

  • Bittar EE, Schultz R, Tesar J (1980) Chloride efflux in single barnacle muscle fibres. J Physiol 301:317–336

    PubMed  Google Scholar 

  • Bjerrum P (1983) Identification and location of amino acid residues essential for anion transport in red cell membranes. In: Quagliariello E, Palmieri F (eds) Structure and function of membrane proteins. Elsevier, Amsterdam, pp 107–115

    Google Scholar 

  • Bjerrum PJ, Tranum-Jensen J, Møllgård (1980) Morphology of erythrocyte membranes and their transport functions following aggregation of membrane proteins. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 51–68 (Alfred Benzon Symposium 14)

    Google Scholar 

  • Bjerrum PJ, Wieth JO, Borders CL (1983) Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein. J Gen Physiol 81:453–484

    Article  PubMed  Google Scholar 

  • Boodhoo A, Reithmeier RAF (1983) Characterization of matrix-bound band 3, the anion transport protein from human erythrocyte membranes. J Biol Chem 259:785–790

    Google Scholar 

  • Borochov H, Shinitzky M (1976) Vertical displacement of membrane proteins mediated by changes in microviscosity. Proc Natl Acad Sci USA 73:4526–4530

    PubMed  Google Scholar 

  • Borochov H, Abbott RE, Schachter D, Shinitzky M (1976) Modulation of erythrocyte membrane proteins by membrane cholesterol and lipid fluidity. Biochemistry 18:251–255

    Article  Google Scholar 

  • Braell WA, Lodish HF (1981) Biosynthesis of the erythrocyte anion transport protein. J Biol Chem 256:11337–11344

    PubMed  Google Scholar 

  • Braell WA, Lodish HF (1982) The erythrocyte anion transport protein is cotranslationally inserted into microsomes. Cell 28:23–31

    PubMed  Google Scholar 

  • Brahm J (1977) Temperature-dependent changes of chloride transport kinetics in human red blood cells. J Gen Physiol 70:283–306

    Article  PubMed  Google Scholar 

  • Brazy PC, Gunn RB (1976) Furosemide inhibition of chloride transport in human red blood cells. J Gen Physiol 68:583–599

    Article  PubMed  Google Scholar 

  • Brock CJ, Tanner MJA, Kempf C (1983) The human erythrocyte anion-transport protein. Biochem J 213:577–586

    PubMed  Google Scholar 

  • Brodsky WA, Durham J, Ehrenspeck G (1979) The effects of a disulphonic stilbene on chloride and bicarbonate transport in the turtle bladder. J Physiol 287:559–573

    PubMed  Google Scholar 

  • Brown CDA, Simmons NL (1981) Catecholamine-stimulation of Cl-secretion in MDCK cell epithelium. Biochim Biophys Acta 649:427–435

    PubMed  Google Scholar 

  • Brown PA, Feinstein MB, Sha'afi RI (1975) Membrane proteins related to water transport in human erythrocytes. Nature 254:523–525

    PubMed  Google Scholar 

  • Cabantchik ZI, Rothstein A (1974a) Membrane proteins related to anion permeability of human red blood cells I. Localisation of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol 15:207–226

    Article  PubMed  Google Scholar 

  • Cabantchik ZI, Rothstein A (1974b) Membrane proteins related to anion permeability of human red blood cells II. Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins. J Membr Biol 15:227–248

    Article  PubMed  Google Scholar 

  • Cabantchik ZI, Balshin M, Breuer W, Rothstein A (1975) Pyridoxal phosphate. An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells. J Biol Chem 250:5130–5136

    PubMed  Google Scholar 

  • Cabantchik ZI, Knauf PA, Rothstein A (1978) The anion transport system of the red blood cell. The role of membrane protein evaluated by use of “probes”. Biochim Biophys Acta 515:239–302

    PubMed  Google Scholar 

  • Cabantchik ZI, Volsky DJ, Ginsburg H, Loyter A (1980) Reconstitution of the erythrocyte anion transport system. Ann NY Acad Soc 341:444–454

    Google Scholar 

  • Canfield VA, Macey RI (1984) Anion exchange in human erythrocytes has a large activation volume. Biochim Biophys Acta 778:379–384

    PubMed  Google Scholar 

  • Carter-Su C, Pessin JE, Mora R, Gitomer W, Czech MP (1982) Photoaffinity labeling of the human erythrocyte d-glucose transporter. J Biol Chem 257:5419–5425

    PubMed  Google Scholar 

  • Cassoly R (1983) Quantitative analysis of the association of human hemoglobin with the cytoplasmic fragment of band 3 protein. J Biol Chem 258:3859–3864

    PubMed  Google Scholar 

  • Cassoly R, Salhany JM (1983) Spectral and oxygen-release kinetic properties of human hemoglobin bound to the cytoplasmic fragment of band 3 protein in solution. Biochim Biophys Acta 745:134–139

    PubMed  Google Scholar 

  • Chasan B, Lukacovic MF, Toon MR, Solomon AK (1984) Effect of thiourea on pCMBS inhibition of osmotic water transport in human red cells. Biochim Biophys Acta 778:185–190

    PubMed  Google Scholar 

  • Cherry RJ, Nigg EA (1980) Molecular interactions involving band 3: Information from rotational diffusion measurements. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Mungksgaard, Copenhagen, pp 130–138 (Alfred Benzon Symposium 14)

    Google Scholar 

  • Cherry RJ, Bürkli A, Busslinger M, Schneider G, Parish GR (1976) Rotational diffusion of band 3 protein in the human red cell membrane. Nature 263:389–393

    PubMed  Google Scholar 

  • Clarke S (1975) The size and detergent binding of membrane proteins. J Biol Chem 250:5459–5469

    PubMed  Google Scholar 

  • Cleland WW (1963) The kinetics of enzyme-catalyzed reactions with two or more substrate or products, I. Nomenclature and rate equations. Biochim Biophys Acta 67:104–137

    Article  PubMed  Google Scholar 

  • Cousin JL, Motais R (1979) Inhibition of anion permeability by amphiphilic compounds in human red cells: evidence for interactions of niflumic acid with the band 3 protein. J Membr Biol 46:125–153

    PubMed  Google Scholar 

  • Cousin JL, Motais R (1982a) Inhibition of anion transport in the red blood cell by anionic amphiphilic compounds I. Determination of the flufenamate-binding site by proteolytic dissection of the band 3 protein. Biochim Biophys Acta 687:147–155

    PubMed  Google Scholar 

  • Cousin JL, Motais R (1982b) Inhibition of anion transport in the red blood cell by anionic amphiphilic compounds II. Chemical properties of the flufenamate-binding site on the band 3 protein. Biochim Biophys Acta 687:156–164

    PubMed  Google Scholar 

  • Cox JV, Moon RT, Lazarides E (1985) Anion transporter: highly cell-type-specific expression of distinct polypeptides and transcripts in erythroid and non-erythroid cells. J Cell Biol 100:1548–1557

    Article  PubMed  Google Scholar 

  • Craik JD, Reithmeier RAF (1984) Inhibition of phosphate transport in human erythrocytes by water-soluble carbodiimides. Biochim Biophys Acta 778:429–434

    PubMed  Google Scholar 

  • Dalmark M (1975) Chloride transport in human red cells. J Physiol 250:39–64

    PubMed  Google Scholar 

  • Dalmark M (1976) Effects of halides and bicarbonate on chloride transport in human red blood cells. J Gen Physiol 67:223–234

    Article  PubMed  Google Scholar 

  • Darmon A, Zangvill M, Cabantchik ZI (1983) New approaches for the reconstitution and functional assay of membrane transport proteins. Application to the anion transporter of human erythrocytes. Biochim Biophys Acta 727:77–88

    PubMed  Google Scholar 

  • Dekowski SA, Rybicki A, Drickamer K (1983) A tyrosine kinase associated with the red cell membrane phosphorylates band 3. J Biol Chem 258:2750–2753

    PubMed  Google Scholar 

  • Deuticke B (1977) Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev Physiol Biochem Pharmacol 78:1–97

    PubMed  Google Scholar 

  • Deuticke B, von Benthheim M, Beyer E, Kamp D (1978) Reversible inhibition of anion exchange in human erythrocytes by an inorganic disulfonate, tetrathionate. J Membr Biol 44:135–158

    PubMed  Google Scholar 

  • Deuticke B, Grunze M, Haest CWM (1980) Influence of membrane lipids on ion and non electrolyte transport through the erythrocyte membrane. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 143–156 (Alfred Benzon Symposium 14)

    Google Scholar 

  • Deziel M, Pegg W, Mack E, Rothstein A, Klip A (1984) Labelling of the human erythrocyte glucose transporter with 3H-labelled cytochalasin B occurs via protein photoactivation. Biochim Biophys Acta 772:403–406

    PubMed  Google Scholar 

  • Dissing S, Romano L, Passow H (1981) The kinetics of anion equilibrium exchange across the red blood cell membrane as measured by means of 35S-thiocyanate. J Membr Biol 62:219–229

    PubMed  Google Scholar 

  • Dix JA, Verkman AS (1982) Stopped-flow and temperature-jump measurements on biological systems: effects of heterogeneity, unstirred layers and multiple reaction intermediates. Biophys J 37:216a

    Google Scholar 

  • Dix JA, Verkman AS, Solomon AK, Cantley LC (1979) Human erythrocyte anion exchange site characterized using a fluorescent probe. Nature 282:520–522

    PubMed  Google Scholar 

  • Dix JA, Verkman AS, Solomon AK (1981) “Rate constant inhibition” — a possible mechanism for stilbene inhibition of anion exchange. Biophys J 33:49a

    Google Scholar 

  • Dorst H-J, Schubert D (1979) Self-association of band 3 protein from human erythrocyte membranes in aqueous solutions. Hoppe-Seyler's Z Physiol Chem 360:1605–1618

    PubMed  Google Scholar 

  • Drickamer LK (1976) Fragmentation of the 95,000-Dalton transmembrane polypeptide in human erythrocyte membranes. J Biol Chem 251:5115–5123

    PubMed  Google Scholar 

  • Drickamer LK (1977) Fragmentation of the band 3 polypeptide from human erythrocyte membranes. J Biol Chem 252:6906–6917

    Google Scholar 

  • Drickamer LK (1978) Orientation of the band 3 polypeptide from human erythrocyte membranes. J Biol Chem 253:7242–7248

    PubMed  Google Scholar 

  • Du Pre AM, Rothstein A (1981) Inhibition of anion transport associated with chymotryptic cleavages of red blood cell band 3 protein. Biochim Biophys Acta 646:471–478

    PubMed  Google Scholar 

  • Edidin M (1981) Molecular motions and membrane organization and function. In: Finean FB, Michell RH (eds) Membrane structure. Elsevier/North Holland, Amsterdam, pp 37–82 (New comprehensive biochemistry, vol 1)

    Google Scholar 

  • Ehrenspeck G (1982) Effect of 3-isobutyl-1-methylxanthine on HCO3-transport in turtle bladder. Biochim Biophys Acta 684:219–227

    PubMed  Google Scholar 

  • Eidelman D, Cabantchik ZI (1983a) The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate. II Kinetic properties of NBD-taurine transfer in symetric conditions. J Membr Biol 71:141–148

    Article  PubMed  Google Scholar 

  • Eidelman D, Cabantchik ZI (1983b) The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate II kinetic properties of NBD-taurine transfer in asymmetric conditions. J Membr Biol 71:149–161

    Article  PubMed  Google Scholar 

  • Eisenberg D (1984) Three-dimensional structure of membrane and surface proteins. Ann Rev Biochem 53:595–623

    Article  PubMed  Google Scholar 

  • Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142

    Article  PubMed  Google Scholar 

  • Eisinger J, Flores J, Salhany JM (1982) Association of cytosol hemoglobin with the membrane in intact erythrocytes. Proc Natl Acad Sci 79:408–412

    PubMed  Google Scholar 

  • Falke FJ, Chan SI (1984) Ion channels within ion transport proteins. Evidence in the band 3 system. Biophys J 45:91–92

    Google Scholar 

  • Falke JF, Pace RJ, Chan SI (1984a) Chloride binding to the anion transport binding sites of band 3. A 35Cl NMR study. J Biol Chem 259:6472–6480

    PubMed  Google Scholar 

  • Falke JF, Pace RJ, Chan SI (1984b) Direct observation of the transmembrane recruitment of band 3 transport sites by competitive inhibitors. A 35Cl NMR study. J Biol Chem 259:6481–6491

    PubMed  Google Scholar 

  • Findlay JBC (1974) The receptor proteins for concanavalin A and lens culinaris phytohemmagglutinin in the membrane of the human erythrocyte. J Biol Chem 249:4398–4403

    PubMed  Google Scholar 

  • Formann SA, Verkman AS, Dix JA, Solomon AK (1981) Phloretin binds to band 3, the anion transport protein of the red blood cell membrane. Biophys J 33:48a

    Google Scholar 

  • Formann SA, Verkman AS, Dix JA, Solomon AK (1982) Effect of lipid perturbants on red cell band 3 conformational states. Biophys J 37:216a

    Google Scholar 

  • Fröhlich O (1982) The external anion binding site of the human erythrocyte anion transport: DNDS binding and competition with chloride. J Membr Biol 65:111–123

    Article  PubMed  Google Scholar 

  • Fröhlich O (1983) Contributions of slippage and tunneling to anion net transport across the human red blood cell membrane. Biophys J 41:63a

    Google Scholar 

  • Fröhlich O (1984a) How channel-like is a biological carrier. Studies with the erythrocyte anion transporter. Biophys J 45:93–94

    Google Scholar 

  • Fröhlich O (1984b) Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes. J Gen Physiol 84:877–893

    Article  PubMed  Google Scholar 

  • Fröhlich O, Gunn RB (1982) Mutual interactions of reversible inhibitors on the red cell anion transporter. Biophys J 37:213a

    Google Scholar 

  • Fröhlich O, Leibson C, Gunn RB (1983) Evidence for a positive charge on the anion binding/transport site. J Gen Physiol 81:127–152

    Article  PubMed  Google Scholar 

  • Fukuda M, Eshdat Y, Tarone G, Marchesi VT (1978) Isolation and characterization of peptides derived from the cytoplasmic segment and band 3, the predominant intrinsic membrane protein of the human erythrocyte. J Biol Chem 253:2419–2428

    PubMed  Google Scholar 

  • Fukuda MN, Fukuda M, Hakamori S (1979) Cell surface modification by endo-β-galactosidase. J Biol Chem 254:5458–5465

    PubMed  Google Scholar 

  • Fukuda M, Dell A, Oates JE, Fukuda MN (1984) Structure of branched lactoseaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes. J Biol Chem 259:8260–8273

    PubMed  Google Scholar 

  • Furuya Y, Tarshis T, Law F-Y, Knauf PA (1984) Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. J Gen Physiol 83:657–681

    Article  PubMed  Google Scholar 

  • Funder J, Wieth JO (1976) Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J Physiol 262:679–698

    PubMed  Google Scholar 

  • Galvez LM, Jennings M, Tosteson M (1984) Incorporation of the DIDS binding peptide from the anion transport protein into bilayers. Fed Proc 43:315

    Google Scholar 

  • Geck P, Pietrzyk C, Burckhardt B-C, Pfeiffer B, Heinz E (1980) Electrically silent cotransport of Na+, K+ and Cl in Ehrlich cells. Biochim Biophys Acta 600:432–447

    PubMed  Google Scholar 

  • Golan DE, Veatch W (1980) Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc Natl Acad Sci 77:2537–2541

    PubMed  Google Scholar 

  • Golan DE, Veatch W (1982) Lateral mobility of band 3 in the human erythrocyte membrane: control by ankyrin-mediated interactions. Biophys J 37:177a

    Google Scholar 

  • Grinstein S, Ship S, Rothstein A (1978) Anion transport in relation to proteolytic dissection of band 3 protein. Biochim Biophys Acta 507:294–304

    PubMed  Google Scholar 

  • Grinstein S, McCullough L, Rothstein A (1979) Transmembrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites. J Gen Physiol 73:493–514

    Article  PubMed  Google Scholar 

  • Gruber W, Deuticke B (1973) Comparative aspects of phosphate transfer across mammalian erythrocyte membranes. J Membr Biol 13:19–36

    Article  PubMed  Google Scholar 

  • Grunze M, Forst B, Deuticke B (1980) Dual effect of membrane cholesterol on simple and mediated transport processes in human erythrocytes. Biochim Biophys Acta 600:860–869

    PubMed  Google Scholar 

  • Grygorczyk R, Schwarz W (1983) Properties of the Ca2+-activated K+ conductance of human red cells, as revealed by the patch clamp technique. Cell Calcium 4:499–510

    Article  PubMed  Google Scholar 

  • Grygorczyk R, Schwarz W, Passow H (1984) Ca++-induced K+ channels in human red cells: a comparison of single channel currents with ion fluxes. Biophys J 45:693–698

    PubMed  Google Scholar 

  • Guidotti G (1977) The structure of intrinsic membrane proteins. J Supermol Struct 7:489–497

    Article  Google Scholar 

  • Guidotti G (1980) The structure of the band 3 polypeptide. In: Lassen UV, Ussing HH. Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 300–308 (Alfred Benzon Symposium 14)

    Google Scholar 

  • Gunn RB (1973) A titratable carrier model for monovalent and divalent inorganic anions in red blood cells. In: Gerlach E, Moser K, Deutsch E, Wilmanns W (eds) Erythrocytes, thrombocytes, leucocytes. Thieme, Stuttgart, pp 77–79

    Google Scholar 

  • Gunn RB (1978) Considerations of the titratable carrier model for sulfate transport in human red blood cells. In: Hoffman JF (ed) Membrane transport processes, vol 1. Raven, New York, pp 61–77

    Google Scholar 

  • Gunn RB (1979) Transport of anions across red cell membranes. In: Giebisch G, Tosteson DC, Ussing HH (eds) Transport across biological membranes of membrane transport in biology, vol II. Springer, Berlin Heidelberg New York, pp 59–80

    Google Scholar 

  • Gunn RB, Fröhlich O (1979) Assymetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time. J Gen Physiol 74:351–374

    Article  PubMed  Google Scholar 

  • Gunn RB, Fröhlich O (1982) Arguments in support of a single transport site on each anion transporter in human red cells. In: Zadunaisky J (ed) Chloride transport in biological membranes. Academic, New York, pp 33–59

    Google Scholar 

  • Gunn RB, Milanick MA (1982) Internal protons are competitive inhibitors of chloride exchange in human erythrocytes. Biophys J 37:336a

    Google Scholar 

  • Gunn RB, Milanick MA (1983) Internal protons are a mixed inhibitor of chloride exchange in human erythrocytes. Fed Proc 42:606

    Google Scholar 

  • Gunn RB, Dalmark M, Tosteson D, Wieth JO (1973) Characteristics of chloride transport in human red blood cells. J Gen Physiol 61:185–206

    Article  PubMed  Google Scholar 

  • Gunn RB, Fröhlich O, Macintyre JD, Low PS (1979) Calcium modification of the anion transport mechanism in red blood cells. Biophys J 25:106a

    Google Scholar 

  • Haest CWM (1982) Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Biochim Biophys Acta 694:331–352

    PubMed  Google Scholar 

  • Haest CWM, Kamp D, Plasa G, Deuticke B (1977) Intra-and intermolecular cross-linking of membrane proteins in intact erythrocytes and ghosts by SH-oxidizing agents. Biochim Biophys Acta 469:226–230

    PubMed  Google Scholar 

  • Halestrap AP (1976) Transport of pyruvate and lactate in human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent-carrier. Biochem J 156:193–207

    PubMed  Google Scholar 

  • Hargreaves WR, Giedd KN, Verkleji A, Branton D (1980) Reassociation of ankyrin with band 3 in erythrocyte membranes and in lipid vesicles. J Biol Chem 255:11965–11972

    PubMed  Google Scholar 

  • Harriw EJ, Pressman BC (1967) Obligate cation exchanges in red cells. Nature 216:918–920

    PubMed  Google Scholar 

  • Hautmann M, Schnell KF (1985) Concentration dependence of the chloride self exchange and homoexchange fluxes in human red cell ghosts. Pflügers Arch 405:193–201

    Article  Google Scholar 

  • Herbst F, Rudloff V (1982) Acylation of integral erythrocytes membrane proteins resulting in a soluble form of band 3 protein. Protides Biol Fluids 29:113–116

    Google Scholar 

  • Herbst F, Rudloff V (1984) The preparation of hydrophilic derivatives of band 3 protein by acylation of the human red blood cell membrane. Hoppe-Seyler's Z Physiol Chem 365:525–530

    PubMed  Google Scholar 

  • Higashi T, Richards CS, Uyeda K (1979) The interaction of phosphofructokinase with erythrocyte membranes. J Biol Chem 254:9542–9550

    PubMed  Google Scholar 

  • Ho MK, Guidotti G (1975) A membrane protein from human erythrocytes involved in anion exchange. J Biol Chem 250:675–685

    PubMed  Google Scholar 

  • Hoffman JF, Laris PC (1974) Determination of membrane potentials in human and amphibian red blood cells by means of a fluorescent probe. J Physiol 239:519–552

    PubMed  Google Scholar 

  • Hoffman JF, Laris PC (1984) Membrane electrical parameters of normal human red blood cells. In: Blaustein MP, Lieberman M (eds) Electrogenic transport: fundamental principles and physiological implications. Raven, New York, pp 287–293

    Google Scholar 

  • Hoffman JF, Lassen UV (1970) Plasma membrane potentials in amphiuma red cells. Proc XXV Congr Int Union Physiol Sci IX:253

    Google Scholar 

  • Hoffman JF, Kaplan JH, Callahan TJ, Freedman JC (1980) Electrical resistance of the red cell membrane and the relation between net anion transport and the anion exchange mechanism. Ann NY Acad Sci 341:357–360

    PubMed  Google Scholar 

  • Hsu L, Morrison M (1983) The interaction of human erythrocyte band 3 with cytoskeletal components. Arch Biochem Biophys 227:31–38

    Article  PubMed  Google Scholar 

  • Hunter MJ (1971) A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell. J Physiol 218:49–50

    Google Scholar 

  • Hunter MJ (1977) Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J Physiol 268:35–49

    PubMed  Google Scholar 

  • Jackson P, Morgan B (1982) The relation between the membrane cholesterol content and anion exchange in the erythrocytes of patients with cholistasis. Biochim Biophys Acta 693:99–104

    PubMed  Google Scholar 

  • Jacquez JA (1964) The kinetics of carrier-mediated transport. Biochim Biophys Acta 79:318–328

    PubMed  Google Scholar 

  • Jenkins RE, Tanner MJA (1977) The structure of the major protein of the human erythrocyte membrane. Characterization of the intact protein and major fragments. Biochem J 161:139–147

    PubMed  Google Scholar 

  • Jennings ML (1976) Proton fluxes associated with erythrocyte membrane anion exchange. J Membr Biol 28:187–205

    Article  PubMed  Google Scholar 

  • Jennings ML (1978) Characteristics of CO2-independent pH equilibration in human red blood cells. J Membr Biol 40:365–391

    Article  PubMed  Google Scholar 

  • Jennings ML (1980) Apparent “recruitment” of SO4 transport sites by the Cl gradient across the human erythrocyte membrane. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 450–463 (Alfred Benzon Symposium 14)

    Google Scholar 

  • Jennings ML (1982a) Reductive methylation of the two H2DIDS-binding lysine residues of band 3, the human erythrocyte anion transport protein. J Biol Chem 257:7554–7559

    PubMed  Google Scholar 

  • Jennings ML (1982b) Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes. J Gen Physiol 79:169–185

    Article  PubMed  Google Scholar 

  • Jennings ML (1984) Oligomeric structure and the anion transport function of human erythrocyte band 3 protein. J Membr Biol 80:105–117

    Article  PubMed  Google Scholar 

  • Jennings ML (1985) Kinetics and mechanism of anion transport in red blood cells. Annu Rev Physiology 47:519–533

    Article  Google Scholar 

  • Jennings ML, Adams MF (1981) Modification by papain of the structure and function of band 3, the erythrocyte anion transport protein. Biochemistry 20:7118–7122

    Article  PubMed  Google Scholar 

  • Jennings ML, Nicknish JS (1984) Erythrocyte band 3 protein: evidence for multiple membrane-crossing segments in the 17000-dalton chymotryptic fragment. Biochemistry 23:6432–6436

    Article  PubMed  Google Scholar 

  • Jennings ML, Passow H (1979) Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by 4,4′-diisothiocyano-dihydrostilbene-2,2′-disulfonate. Biochim Biophys Acta 554:498–519

    PubMed  Google Scholar 

  • Jennings ML, Adams-Lackey M, Denney GH (1984) Peptides of human erythrocyte band 3 protein produced by extracellular papain cleavage. J Biol Chem 259:4652–4660

    PubMed  Google Scholar 

  • Kampman L, Lepke S, Fasold H, Fritzsch G, Passow H (1982) The kinetics of intramolecular cross-linking of the band 3 protein in the red blood cell membrane by 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid (H2DIDS). J Membr Biol 70:199–216

    Article  PubMed  Google Scholar 

  • Kapitza H-G, Sackmann E (1980) Local measurement of lateral motion in erythrocyte membranes by photobleaching technique. Biochim Biophys Acta 595:56–64

    PubMed  Google Scholar 

  • Kaplan JH (1972) Anion diffusion across artificial lipid membranes: the effects of lysozyme on anion diffusion from phospholipid liposomes. Biochim Biophys Acta 290:339–347

    PubMed  Google Scholar 

  • Kaplan JH, Scorah K, Fasold H, Passow H (1976) Sidedness of the inhibitory action of disulfonic acids on chloride equilibrium exchange and net transport across the human erythrocyte membrane. FEBS Lett 62:182–185

    PubMed  Google Scholar 

  • Kaplan JH, Pring M, Passow H (1980) Concentration dependence of chloride movements that contribute to the conductance of the red cell membrane. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 494–497 (Alfred Benzon Symposium 14)

    Google Scholar 

  • Kaplan JH, Pring M, Passow H (1982) Brand-3-mediated diffusive anion flow across the red blood cell membrane. Fed Proc 41:975

    Google Scholar 

  • Kaplan JH, Pring M, Passow H (1983) Band-3 protein-mediated anion conductance of the red cell membrane. FEBS Lett 156:175–179

    Article  PubMed  Google Scholar 

  • Karadsheh NS, Uyeda K (1977) Changes in alosteric properties of phosphofructokinase bound to erythrocyte membranes. J Biol Chem 252:7418–7420

    PubMed  Google Scholar 

  • Kasahara M, Hinkle PC (1977) Reconstitution and purification of the d-glucose transporter from human erythrocytes. J Biol Chem 252:7384–7390

    PubMed  Google Scholar 

  • Kaul RK, Murthy SNP, Reddy AG, Steck TL, Köhler H (1983) Amino acid sequence of the N-terminal 201 residues of human erythrocyte membrane band 3. J Biol Chem 258:7981–7990

    PubMed  Google Scholar 

  • Kay MMB, Tracey CM, Goodman JR, Cone JC, Bassel PS (1983) Polypeptides immunologically related to band 3 are present in nucleated somatic cells. Proc Natl Acad Sci USA 80:6882–6886

    PubMed  Google Scholar 

  • Kelly GE, Winzor DJ (1984) Quantitative characterization of the interactions of aldolase and glyceraldehyde-3-phosphate dehydrogenase with erythrocyte membranes. Biochim Biophys Acta 778:67–73

    PubMed  Google Scholar 

  • Kempf C, Brock C, Sigrist H, Tanner MJA, Zahler P (1981) Interaction of phenylisothiocyanate with human erythrocyte band 3 protein. II Topology of phenylisothiocyanate modification. Biochim Biophys Acta 641:88–98

    PubMed  Google Scholar 

  • Kiehm DJ, Ji TH (1977) Photochemical cross-linking of cell membranes. J Biol Chem 252:8524–8531

    PubMed  Google Scholar 

  • Kimelberg HK (1981) Active accumulation and exchange transport of chloride in astroglial cells in culture. Biochim Biophys Acta 646:179–184

    PubMed  Google Scholar 

  • Kleinmann JG, Ware RA, Schwartz JH (1981) Anion transport regulates intracellular pH in renal cortical tissue. Biochim Biophys Acta 648:87–92

    PubMed  Google Scholar 

  • Klimann HJ, Steck TL (1980a) Kinetic analysis of the association of glyceraldehyde 3-phosphate dehydrogenase with the human red cell membrane. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 312–322 (Alfred Benson Symposium 14)

    Google Scholar 

  • Klimann HJ, Steck TL (1980b) Association of glyceraldehyde-3-phosphate dehydrogenase with the human red cell membrane. A kinetic analysis. J Biol Chem 255:6314–6321

    PubMed  Google Scholar 

  • Klugerman AH, Gaarn A, Parkes JG (1984) Effect of cholesterol upon the conformation of band 3 and its transmembrane fragment. Can J Biochem Cell Biol 62:1033–1040

    PubMed  Google Scholar 

  • Knauf PA (1979) Erythrocyte anion exchange and the band 3 protein; transport kinetics and molecular structure. Curr Top Membr Transp 12:249–363

    Google Scholar 

  • Knauf PA (1981) Niflumic acid senses the conformation of the transport site of the human red cell anion exchange system. Biophys J 33:49a

    Google Scholar 

  • Knauf PA (1982) Kinetic assymetry of the red cell anion exchange system. In: Martonosi A (ed) Membranes and transport, vol II. Plenum, New York, pp 441–449

    Google Scholar 

  • Knauf PA (to be published) Anion transport in erythrocytes. In: Andreoli T, Hoffman JF, Schultz SG, Fanenstil DD (eds) Membrane transport disorders, 2nd Ed. Plenum, New York

    Google Scholar 

  • Knauf PA, Law FY (1980) Relationship of net anion flow to the anion exchange system. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 448–493 (Alfred Benson Symposium 14)

    Google Scholar 

  • Knauf PA, Mann N (1982) Use of niflumic acid (NA) to probe the asymmetry of the human erythrocyte anion exchange systems. Fed Proc 41:975

    Google Scholar 

  • Knauf PA, Mann NA (1984a) Location of the modifier site of the human erythrocyte anion exchange system. Biophys J 45:18a

    Google Scholar 

  • Knauf PA, Mann NA (1984b) Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system. J Gen Physiol 83:703–725

    Article  PubMed  Google Scholar 

  • Knauf PA, Rothstein A (1971) Chemical modification of membranes. In: Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J Gen Physiol 58:190–210

    PubMed  Google Scholar 

  • Knauf PA, Fuhrmann GF, Rothstein S, Rothstein A (1977) The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol 69:363–386

    Article  PubMed  Google Scholar 

  • Knauf PA, Breuer W, McCulloch L, Rothstein A (1978a) N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) as a photoaffinity probe for identifying membrane somponents containing the modifier site of the human red blood cell anion exchange system. J Gen Physiol 72:631–649

    Article  PubMed  Google Scholar 

  • Knauf PA, Ship S, Breuer W, McCulloch L, Rothstein A (1978b) Asymmetry of the red cell anion exchange system: different mechanism of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethyl-sulfonate (NAP-taurine) at the inside and outside of the membrane. J Gen Physiol 72:607–630

    Article  PubMed  Google Scholar 

  • Knauf PA, Tarshis T, Grinstein S, Furuya W (1980) Spontaneous and induced asymmetry of the human erythrocyte anion exchange system as detected by chemical probes. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 389–403 (Alfred Benzon Symposium 14)

    Google Scholar 

  • Knauf PA, Mann N, Law F-Y (1981) Niflumic acid senses the conformation of the transport site of the human red cell anion exchange system. Biophys J 33:49a

    Google Scholar 

  • Knauf PA, Law F-Y, Marchant PJ (1983a) Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. J Gen Physiol 81:95–126

    Article  PubMed  Google Scholar 

  • Knauf PA, Mann NA, Kalwas JE (1983b) Net chloride transport across the human erythrocyte membrane into low chloride media: evidence against a slippage mechanism. Biophys J 41:164a

    Google Scholar 

  • Knauf PA, Law FY, Tarshis T, Furuya W (1984) Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system. J Gen Physiol 83:683–701

    Article  PubMed  Google Scholar 

  • Köhne W, Haest CWM, Deuticke B (1981) Mediated transport of anions in band 3-phospholipid vesicles. Biochim Biophys Acta 229:547–556

    Google Scholar 

  • Köhne W, Deuticke B, Haest CWM (1983) Phospholipid dependence of the anion transport system of the human erythrocyte membrane. Biochim Biophys Acta 730:139–150

    PubMed  Google Scholar 

  • Kopito RR, Lodish HF (1985) Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316:234–238

    Article  Google Scholar 

  • Koppel DE, Sheetz MP, Schindler M (1981) Matrix control of protein diffusion in biological membranes. Proc Natl Acad Sci 78:3576–3580

    PubMed  Google Scholar 

  • Ku CP, Jennings ML, Passow H (1979) A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red cell membrane. Biochim Biophys Acta 553:132–144

    PubMed  Google Scholar 

  • Läuger P (1980) Kinetic properties of ion carriers and channels. J Membr Biol 57:163–178

    Article  PubMed  Google Scholar 

  • Läuger P (1984) Channels with multiple conformational states: interrelations with carriers and pumps. Curr Tob Membr Trans 21:309–326

    Google Scholar 

  • Läuger P (1985) Ionic channels with conformational substates. Biophys J 47:581–590

    PubMed  Google Scholar 

  • Läuger P, Stephan W, Frehland E (1980) Fluctuations of barrier structure in ionic channels. Biochim Biophys Acta 602:167–180

    PubMed  Google Scholar 

  • Langridge-Smith JE, Field M (1981) Sulfate transport in rabbit ileum: characterization of the serosal border anion exchange process. J Membr Biol 63:207–214

    Article  PubMed  Google Scholar 

  • Lassen UV (1972) Membrane potential and membrane resistance of red cells. In: Rørth M, Astrup P (eds) Oxygen affinity and red cell acid-base status. Munksgaard, Copenhagen, pp 291–304 (Alfred Benzon Symposium IV)

    Google Scholar 

  • Lassen UV (1977) Electrical potential and conductance of the red cell membrane. In Ellory JC, Lev VL (eds) Membrane transport in red cells. Academic, New York, pp 137–172

    Google Scholar 

  • Legrum B, Fasold H, Passow H (1980) Enhancement of anion equilibrium exchange by dansylation of the red blood cell membrane. Hoppe-Seyler's Z Physiol Chem 361:1573–1590

    PubMed  Google Scholar 

  • Lepke S, Passow H (1976) Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts. Biochim Biophys Acta 455:353–370

    PubMed  Google Scholar 

  • Lepke S, Passow H (1982) Inverse effects of dansylation of the red blood cell membrane on band 3 protein-mediated transport of sulphate and chloride. J Physiol 328:27–48

    PubMed  Google Scholar 

  • Lepke S, Fasold H, Pring M, Passow H (1976) A study of relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4′-diisothiocyano-stilbene-2,2′-disulfonic acid (DIDS) and of its dihydro derivative (H2DIDS). J Membr Biol 29:147–177

    Article  PubMed  Google Scholar 

  • Levinson C (1982) Chloride transport in the Ehrlich mouse ascites tumor cell. In: Zadunaisky JA (ed) Chloride transport in biological membranes. Academic, New York, pp 383–396

    Google Scholar 

  • Lieb WR, Stein WD (1972) Carrier and non-carrier models for sugar transport in the human red blood cell. Biochim Biophys Acta 265:187–207

    PubMed  Google Scholar 

  • Lieberman DM, Reithmeier RAF (1983) Characterization of the stilbene disulfonate binding site of band 3 polypeptide of human erythrocyte membranes. Biochemistry 22:4028–4033

    PubMed  Google Scholar 

  • Lodish H, Braell WA (1982) Synthesis and maturation of the erythrocyte anion transport protein and internal sequence for membrane insertion. Biochem Soc Symp 47:193–209

    PubMed  Google Scholar 

  • Löw I, Friedrich T, Burckhardt G (1984) Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am J Physiol 246:F334–F342

    PubMed  Google Scholar 

  • Low PS (1978) Specific cation modulation of anion transport across the human erythrocyte membrane. Biochim Biophys Acta 514:264–273

    PubMed  Google Scholar 

  • Low PS, Westfall MA, Allen DP, Appell KC (1984) Characterization of the reversible conformational equilbrium of the cytoplasmic domain of erythrocyte membrane band 3. J Biol Chem 259:13070–13076

    PubMed  Google Scholar 

  • Low PS, Waugh SM, Zinke K, Drenckhahn D (1985) The role of hemoglobin denaturaion and band 3 clustering in red blood cell aging. Science 227:531–533

    PubMed  Google Scholar 

  • Lu YB, Chow EH (1982) Bicarbonate/chloride transport kinetics at 37°C and its relationship to membrane lipids in mammalian erythrocytes. Biochim Biophys Acta 689:485–489

    PubMed  Google Scholar 

  • Lukacovic MF, Feinstein MB, Sha'afi RI, Perrie S (1981) Purification of stabilized band 3 protein of the human erythrocyte membrane and its reconstitution into liposomes. Biochemistry 20:3145–3151

    PubMed  Google Scholar 

  • Lukacovic MF, Toon MR, Solomon AK (1984a) Site of red cell cation leak induced by mercurial sulphydryl reagents. Biochim Biophys Acta 772:313–320

    PubMed  Google Scholar 

  • Lukacovic MF, Verkman AS, Dix JA, Solomon AK (1984b) Specific interaction of the water transport inhibitor, pCMBS, with band 3 in red blood cell membranes. Biochim Biophys Acta 778:253–259

    PubMed  Google Scholar 

  • Lysko KA, Carlson R, Taverna R, Snow J, Brandts JF (1981) Protein involvement in structural transitions of erythrocyte ghosts. Use of thermal gel analysis to detect protein aggregation. Biochemistry 20:5570–5576

    Article  PubMed  Google Scholar 

  • Macara IG, Cantley LC (1981a) Interactions between transport inhibitors at the anion binding sites of the band 3 dimer. Biochemistry 20:5095–5105

    PubMed  Google Scholar 

  • Macara IG, Cantley LC (1981b) Mechanism of anion exchange across the red cell membrane by band 3: interactions between stilbene-disulfonate and NAP-taurine binding sites. Biochemistry 20:5695–5701

    PubMed  Google Scholar 

  • Macara IG, Cantley LC (1983) The structure and function of band 3. In: Elson E, Frazier W, Glaser L (eds) Cell membranes: methods and review, vol I. Plenum, NEw York, pp 47–87

    Google Scholar 

  • Macara IG, Kuo S, Cantley LC (1983) Evidence that inhibitors of anion exchange induce a transmembrane conformational change in band 3. J Biol Chem 258:1785–1792

    PubMed  Google Scholar 

  • Maddy AH (1964) A fluorescent label for the outer components of the plasma membrane. Biochim Biophys Acta 88:390–399

    PubMed  Google Scholar 

  • Maretzki D, Groth J, Tsamaloukas AG, Gründel M, Krüger S, Rapoport S (1974) The membrane association and dissociation of human glyceraldehyde-3-phosphate dehydrogenase under various conditions of hemolysis. Immunochemical evidence for the lack of binding under cellular conditions. FEBS Lett 39:83–87

    Article  PubMed  Google Scholar 

  • Markowitz S, Marchesi VT (1981) The cyrboxyl-terminal domain of human erythrocyte band 3. Description, isolation and location in the bilayer. J Biol Chem 256:6463–6468

    PubMed  Google Scholar 

  • Matsuyama H, Kawano Y, Hamasaki N (1983) Anion transport activity in the human erythrocyte membrane modulated by proteolytic digestion of the 38,000-dalton fragment in band 3. J Biol Chem 258:15376–15381

    PubMed  Google Scholar 

  • Mawby WJ, Findlay JB (1982) Characterization and partial sequence of di-iodosulphophenyl isothiocyanate-binding peptide from human erythrocyte anion-transport protein. Biochem J 205:465–475

    PubMed  Google Scholar 

  • Mercer RW, Dunham PB (1982) Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. J Gen Physiol 78:547–568

    Article  Google Scholar 

  • Mikkelsen RB, Wallach DFH (1976) Photoactivated cross-linking of proteins within the erythrocyte membrane core. J Biol Chem 251:7413–7416

    PubMed  Google Scholar 

  • Milanick MA (1980) Ordered reaction of sulfate and protons with the anion exchange mechanism of human red blood cells. Fed Proc 39:1715

    Google Scholar 

  • Milanick MA, Gunn RB (1982a) Proton-sulfate co-transport: mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells. J Gen Physiol 79:87–113

    Article  PubMed  Google Scholar 

  • Milanick MA, Gunn RB (1982b) Interactions between external protons and the anion transporter of human erythrocytes. Biophys J 37:213a

    Google Scholar 

  • Milanick MA, Gunn RB (1984) Proton-sulfate cotransport: external proton activation of sulfate influx into human red blood cells. Am J Physiol 247:C247–C259

    PubMed  Google Scholar 

  • Miller C (1984) Ion channels in liposomes. Ann Rev Physiol 46:549–558

    Article  Google Scholar 

  • Mond R (1927) Umkehr der Anionenpermeabilität der roten Blutkörperchen in eine selektive Permeabilität der Kationen. Pflüger's Arch Ges Physiol 217:618–630

    Article  Google Scholar 

  • Morgan M, Hanke P, Grygorczik R, Tintschl A, Fasold H, Passow H (1985) Mediation of anion transport in oocytes of Xenopus laevis by biosynthetically inserted band 3 protein from mouse spleen erythroid cells. EMBO J 4:1927–1931

    PubMed  Google Scholar 

  • Motais R, Cousin JL (1978) A structure activity study of some drugs acting as reversible inhibitors of chloride permeability in red cell membranes: influence of ring substituents. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: A multidisciplinary approach. Raven, New York, pp 219:225

    Google Scholar 

  • Mühlebach T, Cherry RJ (1982) Influence of cholesterol on the rotation and self-association of band 3 in the human erythrocyte membrane. Biochem 21:4225–4228

    PubMed  Google Scholar 

  • Mueller TJ, Morrison M (1977) Detection of a variant of protein 3, the major trans-membrane protein of the human erythrocyte. J Biol Chem 252:6573–6576

    PubMed  Google Scholar 

  • Mueller TJ, Li YT, Morrison M (1979) Effect of endo-β-galactosidase on intact huamn erythrocytes. J Biol Chem 254:8103–8106

    PubMed  Google Scholar 

  • Muirhead KA, Steinfeldt RC, Severski MC, Knauf PA (1984) Anion transport heterogeneity detected by flow cytometric measurement of NBD-taurine efflux kinetics. Cytometry 5:268–274

    PubMed  Google Scholar 

  • Murthy SNP, Liu T, Köhler H, Steck TL (1981a) The adolase binding site of the human erythrocyte membrane. Primary structure of the amino-terminal decapeptide of band 3. J Supramol Struct (Suppl) 5:125

    Google Scholar 

  • Murthy SNP, Liu T, Kaul RK, Köhler H, Steck TL (1981b) The aldolase-binding site of the human erythrocyte membrane is at the NH2 terminus of band 3. J Biol Chem 256:11203–11208

    PubMed  Google Scholar 

  • Murthy SNP, Kaul RK, Köhler H (1984) Hemoglobin binds to the amino-terminal 23-residue fragment of human erythrocyte band 3 protein. Hoppe-seyler's Z Physiol Chem 365:9–17

    PubMed  Google Scholar 

  • Nanri H, Hamasaki N, Minakami S (1983) Affinity labeling of erythrocyte band 3 proteins with pyridoxal 5-phosphate involvement of the 35,000 dalton fragment in anion transport. J Biol Chem 258:5985–5989

    PubMed  Google Scholar 

  • Nigg EA, Cherry RJ (1979) Influence of temperature and cholesterol on the rotational diffusion of band 3 in the human erythrocyte membrane. Biochemistry 18:3457–3465

    PubMed  Google Scholar 

  • Nigg EA, Cherry RJ (1980) Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: protein rotational diffusion measurements. Proc Natl Acad Sci 77:4702–4706

    PubMed  Google Scholar 

  • Obaid AL, McElroy-Critz A, Crandall ED (1979) Kinetics of bicarbonate/chloride exchange in dogfish erythrocytes. Am J Physiol 237:132–138

    Google Scholar 

  • O'Connor CM, Clarke S (1983) Methylation of erythrocyte membrane proteins at extracellular and intracellular D-aspartyl sites in vitro. J Biol Chem 258:8485–8492

    PubMed  Google Scholar 

  • Pappert G, Schubert D (1982) Self-association of band 3 protein from erythrocyte membranes in solutions of a non-ionic detergent, Ammonyx-LO. Protides Biol Fluids 29:117–121

    Google Scholar 

  • Pappert G, Schubert D (1983) The state of association of band 3 protein of the human erythrocyte membrane in solutions of nonionic detergents. Biochim Biophys Acta 730:32–40

    PubMed  Google Scholar 

  • Passow H (1969) Passive ion permeability of the erythrocyte membrane. Prog Biophys Mol Biol 19:425–467

    Article  Google Scholar 

  • Passow H (1971) Effects of pronase on passive ion permeability of the human red blood cell. J Membr Biol 6:233–258

    Article  Google Scholar 

  • Passow H (1978) The binding of 1-fluoro-2,4-dinitrobenzene and of certain stilbene-2,2'-disulfonic acids to anion permeability-controlling sites on the protein in band 3 of the red blood cell membrane. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven, New York, pp 203–218

    Google Scholar 

  • Passow H (1982) Anion-transport-related conformational changes of the band 3 protein in the red blood cell membranes. In: Martonosi AN (ed) Membranes and transport, vol II. Plenum, New York, pp 451–460

    Google Scholar 

  • Passow H, Fasold H (1980) On the mechanism of band-3-protein mediated anion transport across the red blood cell membrane. In: Hollan G, Gardos G, Sarkadi B (eds) Genetics, structure and function of blood cells. Pergamon/Akademiai Kiado, Budapest, pp 249–261 (Proc 28th Intern Congr of Physiol Sciences, Budapest)

    Google Scholar 

  • Passow H, Schnell KF (1969) Chemical modifiers of passive ion permeability of the erythrocyte membrane. Experientia 25:460–468

    PubMed  Google Scholar 

  • Passow H, Wood PG (1974) Current concepts of the mechanism of anion permeability. In: Callingham BA (ed) Drugs and transport processes. McMillan, London, pp 149–171

    Google Scholar 

  • Passow H, Zaki L (1978) Studies on the molecular mechanism of anion transport across the red blood cell membrane. In: Karnovsky M (ed) Molecular specification and symmetry in membrane function. Harvard University Press, Cambridge, pp 229–252

    Google Scholar 

  • Passow H, Fasold H, Zaki L, Schumann B, Lepke S (1975) Membrane proteins and anion exchange in human erythrocytes. In: Gardos G, Szasz I (eds) Biomembranes: structure and function. North Holland, Amsterdam, pp 197–214 (Proc 9th FEBS meeting Budapest)

    Google Scholar 

  • Passow H, Fasold H, Lepke S, Pring M, Schumann B (1977) Chemical and enzymatic modification of membrane proteins and anion transport in human red blood cells. In: Miller MW, Shamoo AE (eds) Membrane toxicity. Plenum, New York, pp 353–379

    Google Scholar 

  • Passow H, Fasold H, Gärtner M, Legrum B, Ruffing W, Zaki L (1980a) Anion transport across the red blood cell membrane and the conformation of the protein in band 3. Ann NY Acad Sci 341:361–383

    PubMed  Google Scholar 

  • Passow H, Kampmann L, Fasold H, Jennings M, Lepke S (1980b) Mediation of anion transport across the red blood cell membrane by means of conformational changes of the band 3 protein. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 345–367 (Alfred Benzon Symposium 14)

    Google Scholar 

  • Passow H, Fasold H, Jennings ML, Lepke S (1982) The study of the anion transport protein ('band 3 protein') in the red cell membrane by means of tritiated 4,4'-diisothiocyano-dihydrostilbene-2,2'-disulfonic acid (3H2 DIDS). In: Zadunaisky J (ed) Chloride transport in biological membranes. Academic, New York, pp 1–31

    Google Scholar 

  • Passow H, Berghout A, Romano L (1984a) Band 3 protein mediated non electrogenic proton equilibration across the membranes of the red blood cells of mammals, amphibians and fish. In: Bolis L, Helmreich E, Passow H (eds) Information and energy transduction in biological membranes. Liss, New York, pp 95–102

    Google Scholar 

  • Passow H, Ruffing W, Gärtner E, Legrum B (1984b) Modification of anion transport and the protein in band 3 by dinitrophenylation of the red blood cell membrane in chloride and sulfate media. Hoppe-Seyler's Z Physiol Chem 365:1041

    Google Scholar 

  • Passow H, Shields M, LaCelle P, Grygorczyk R, Schwarz W, Peters R (1986) Effects of calcium on structure and function of the red blood cell membrane. In: Clarkson T (ed) The cytoskeleton: a target for toxic agents. Plenum. In press

    Google Scholar 

  • Patlak CS (1957) Contributions to the theory of active transport: II The gate type non-carrier mechanism and generalisations concerning tracer flow, efficiency and measurement of the energy expenditure. Bull Math Biophys 19:209–235

    Google Scholar 

  • Peters R (1981) Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol Int Rep 5:733–760

    Article  PubMed  Google Scholar 

  • Peters R, Passow H (1984) Anion transport in single erythrocyte ghosts measured by fluorescence microphoto-lysis. Biochim Biophys Acta 777:334–338

    PubMed  Google Scholar 

  • Peters R, Peters J, Tews KH, Bahr W (1974) A microfluorometric study of translational diffusion in erythrocyte membranes. Biochim Biophys Acta 367:282–294

    PubMed  Google Scholar 

  • Pinto da Silva P (1972) Translational mobility of membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol 53:777–787

    Article  PubMed  Google Scholar 

  • Raida M, Passow H (1985) Enhancement of divalent anion transport across the human red blood cell membrane by the water-soluble dansyl chloride derivative 2-(N-piperidine)ethylamine-1-naphtyl-5-sulfonylchloride (PENS-Cl). Biochem Biophys Acta 812:624–632

    PubMed  Google Scholar 

  • Ramjeesingh M, Gaarn A, Rothstein A (1980a) The location of a disulfonic stilbene binding site in band 3, the anion transport protein of the red blood cell membrane. Biochim Biophys Acta 599:127–139

    PubMed  Google Scholar 

  • Ramjeesingh M, Grinstein S, Rothstein A (1980b) Intrinsic segments of band 3 that are associated with anion transport across the red blood cell membranes. J Membr Biol 57:95–102

    Article  PubMed  Google Scholar 

  • Ramjeesingh M, Gaarn A, Rothstein A (1981) The amino acid conjugate formed by the interaction of the anion transport inhibitor, DIDS, with band 3 protein from human red blood cell membranes. Biochim Biophys Acta 641:173–182

    PubMed  Google Scholar 

  • Ramjeesingh M, Gaarn A, Rothstein A (1982) The sulfhydryl groups of the 35,000-dalton C-terminal segment of band 3 are located in a 9000-dalton fragment produced by chymotrypsin treatment of red cell ghosts. J Bioenerg Biomembr 13:411–423

    Article  Google Scholar 

  • Ramjeesingh M, Gaarn A, Rothstein A (1983) The location of the three cysteine residues in the primary structure of the intrinsic segments of band 3 protein, and implications concerning the arrangement of band 3 protein in the bilayer. Biochim Biophys Acta 729:150–160

    PubMed  Google Scholar 

  • Ramjeesingh M, Gaarn A, Rothstein A (1984) Pepsin cleavage of band 3 produces its membrane-crossing domains. Biochim Biophys Acta 769:381–389

    PubMed  Google Scholar 

  • Rao A (1979) Disposition of the band 3 polypeptide in the human erythrocyte membrane. J Biol Chem 254:3503–3511

    PubMed  Google Scholar 

  • Rao A, Reithmeier RAF (1978) Reactive sulfhydryl groups of the band 3 polypeptide from human erythrocyte membrane. J Biol Chem 254:6144–6150

    Google Scholar 

  • Rao A, Martin P, Reithmeier RAF, Cantley LC (1979) Location of the stilbene disulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer. Biochemistry 18:4505–4516

    PubMed  Google Scholar 

  • Reithmeier RAF (1983) Inhibition of anion transport in human red blood cells by 5,5′-dithiobis(2-nitrobenzoic acid). Biochim Biophys Acta 732:122–125

    PubMed  Google Scholar 

  • Reithmeier RAF, Rao A (1979) Reactive sulfhydryl groups of the band 3 polypeptide from human erythrocyte membranes. Identification of the sulfhydryl groups involved in Cu2+-o-phenanthroline cross-linking. J Biol Chem 254:6151–6155

    PubMed  Google Scholar 

  • Romano L, Passow H (1984) Characterization of the anion transport system in trout red blood cell. Am J Physiol 246:C330–C338

    PubMed  Google Scholar 

  • Ross AH, McConnell HM (1978) Reconstitution of the erythrocyte anion channel. J Biol Chem 253:4777–4782

    PubMed  Google Scholar 

  • Rothstein A (1982) Functional structure of band 3, the anion transport protein in the red blood cell, as determined by proteolytic and chemical cleavage. In: Martonosi AN (ed) Membranes and transport, vol II. Plenum, New York, pp 435–440

    Google Scholar 

  • Rothstein A (1984) The functional architecture of band 3, the anion transport protein of the red cell membrane. Can J Biochem Cell Biol 62:1198–1204

    PubMed  Google Scholar 

  • Rothstein A, Cabantchik ZI, Knauf P (1976) Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc 35:3–10

    PubMed  Google Scholar 

  • Rudloff V, Lepke S, Passow H (1983) Inhibition of anion transport across the red cell membrane by dinitrophenylation of a specific lysine residue at the H2 DIDS binding site of the band 3 protein. FEBS Letters 163:14–21

    Article  PubMed  Google Scholar 

  • Runyon KR, Gunn RB (1984) Phosphate-chloride exchange in human red blood cells: monovalent vs divalent phosphate transport. Biophys J 45:18a

    Google Scholar 

  • Sabatini DD, Kreibich G, Morimoto T, Adesnik M (1982) Mechanisms for the incorporation of proteins in membranes and organelles. J Cell Biol 92:1–22

    Article  PubMed  Google Scholar 

  • Sabban EL, Sabatini DD, Marchesi VT, Adesnik M (1980) Biosynthesis of erythrocyte membrane protein band 3 in DMSO-induced friend erythroleukemia cells. J Cell Physiol 104:261–268

    Article  PubMed  Google Scholar 

  • Sabban E, Marchesi V, Adesnik M, Sabatini DD (1981) Erythrocyte membrane protein band 3: its biosynthesis and incorporation into membranes. J Cell Biol 91:637–646

    Article  PubMed  Google Scholar 

  • Saffmann PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci 72:3111–3113

    PubMed  Google Scholar 

  • Saleemuddin M, Zimmermann U, Schneeweiß F (1977) Preparation of human erythrocyte ghosts in isotonic solution: haemoglobin content and polypeptide composition. Z. Naturforsch 32C:627–631

    Google Scholar 

  • Salhany JM, Rauenbuehler PR (1983) Kinetics and mechanism of erythrocyte anion exchange. J Biol Chem 258:245–249

    PubMed  Google Scholar 

  • Salhany JM, Shaklai N (1979) Functional properties of human hemoglobin bound to the erythrocyte membrane. Biochemistry 18:893–899

    Article  PubMed  Google Scholar 

  • Salhany JM, Cordes KA, Gaines ED (1980) Light-scattering measurements of hemoglobin binding to the erythrocyte membrane. Evidence for transmembrane effects related to a disulfonic stilbene binding to band 3. Biochemistry 19:1447–1454

    Article  PubMed  Google Scholar 

  • Scarpa A, Cecchetto A, Azzone GF (1970) The mechanism of anion translocation and pH equilibration in erythrocytes. Biochim Biophys Acta 219:179–188

    PubMed  Google Scholar 

  • Scheuring U, Kollewe K, Schubert D (1984) A new method for the reconstitution of the anion transport system of the human erythrocyte membrane. Hoppe-Seyler's Z Physiol Chem 365:1056–1057

    Google Scholar 

  • Scheuring U, Kollewe K, Haase W, Schubert D (to be published) A new method for the reconstitution of the anion transport system of the human erythrocyte membrane. J Membrane Biol

    Google Scholar 

  • Schnell KF (1977) Anion transport across the red blood cell membrane mediated by dielectric pores. J Membr Biol 37:99–136

    Article  PubMed  Google Scholar 

  • Schnell KF, Besl E (1984) Concentration dependence of the unidirectional sulfate and phosphate flux in human red cell ghosts under self-exchange and under homoexchange conditions. Pflügers Arch 402:197–206

    Article  Google Scholar 

  • Schnell KF, Gerhardt S, Schöppe-Fredenburg A (1977) Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts. J Membr Biol 30:319–350

    PubMed  Google Scholar 

  • Schnell KF, Besl E, v der Mosel R (1981) Phosphate transport in human red blood cells: concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions. J Membr Biol 61:173–192

    Article  PubMed  Google Scholar 

  • Schnell KF, Elbe W, Käsbauer J, Kaufmann E (1983) Electron spin resonance studies on the inorganic anion transport system of the human red blood cell binding of a disulfonate stilbene spin label (NDS-Tempo) and inhibition of anion transport. Biochim Biophys Acta 732:266–275

    PubMed  Google Scholar 

  • Schubert D, Boss K (1982) Band 3 protein-cholesterol interactions in erythrocyte membranes. Possible role in anion transport and dependency on membrane phospholipid. FEBS Lett 150:4–8

    Article  PubMed  Google Scholar 

  • Schubert D, Domning B (1978) A new method for the preparation of band 3, the main integral protein of the human erythrocyte membrane. Hoppe-Seyler's Z Physiol Chem 359:507–515

    PubMed  Google Scholar 

  • Schubert D, Boss K, Dorst HJ, Flossdorf J, Pappert G (1983) The nature of the stable noncovalent dimers of band 3 protein from erythrocyte membranes in solutions of Triton X-100. FEBS Lett 163:81–84

    PubMed  Google Scholar 

  • Schwoch G, Rudloff V, Wood-Guth I, Passow H (1974) Effect of temperature on sulfate movements across chemically or enzymatically modified membranes of human red blood cells. Biochim Biophys Acta 339:126–138

    PubMed  Google Scholar 

  • Sha'afi RI, Feinstein MB (1977) Membrane water channels and SH groups. In: Miller MW, Shamoo AE (eds) Membrane toxicity. Plenum, New York, pp 67–83

    Google Scholar 

  • Shami Y, Carver J, Ship S, Rothstein A (1977) Inhibition of Cl binding to anion transport protein of the red blood cell by DIDS (4,4′-diisothiocyno-2,2′-stilbene-disulfonic acid) measured by (35Cl) NMR. Biochim Biophys Res Comm 76:429–436

    Article  Google Scholar 

  • Shami Y, Rothstein A, Knauf PA (1978) Identification of the Cl transport site of human blood cells by a kinetic analysis of the inhibitory effects of a chemical probe. Biochim Biophys Acta 508:357–363

    PubMed  Google Scholar 

  • Shanahan MF, D'Artel-Ellis J (1984) Orientation of the glucose transporter in the human erythrocyte membrane. Investigation by in situ proteolytic dissection. J Biol Chem 259:13878–13884

    PubMed  Google Scholar 

  • Shanahan MF (1982) A natural photoaffinity ligand for labeling the human erythrocyte glucose transporter. J Biol Chem 257:7290–7293

    PubMed  Google Scholar 

  • Shaklai N, Yguerabide J, Ranney HM (1977) Classification and localization of hemoglobin binding sites on the red blood cell membrane. Biochemistry 16:5593–5597

    Article  PubMed  Google Scholar 

  • Sheetz M, Schindler M, Koppel DE (1980) Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature 285:510–512

    Article  PubMed  Google Scholar 

  • Shelton RL, Langdon RG (1983) Reconstitution of glucose transport using human erythrocyte band 3. Biochim Biophys Acta 733:25–33

    PubMed  Google Scholar 

  • Shinitzky M, Rivnay B (1977) Degree of exposure of membrane proteins determined by fluorescence quenching. Biochemistry 16:982–986

    Article  PubMed  Google Scholar 

  • Ship S, Shami Y, Breuer W, Rothstein A (1977) Synthesis of tritiated (3H)DIDS and its covalent reaction with sites related to anion transport in red blood cells. J Membr Biol 33:311–324

    Article  PubMed  Google Scholar 

  • Sigrist H, Zahler P (1982) Hydrophobic labeling and cross-linking of membrane proteins. In: Martonosi AN (ed) Membranes and transport, vol I. Plenum, New York, pp 173–184

    Google Scholar 

  • Sigrist H, Kempf C, Zahler P (1980) Interaction of phenylisothiocyanate with human erythrocyte band 3. I. Covalent modification and inhibition of phosphate transport. Biochim Biophys Acta 597:137–144

    PubMed  Google Scholar 

  • Simmons NL (1981) Stimulation of Cl secretion by exogenous ATP in cultured MDCK epithelial monolayers. Biochim Biophys Acta 646:231–242

    PubMed  Google Scholar 

  • Singer J, Morrison M (1980) Effect of adenosine on concanavalin A agglutination of human erythrocytes. Biochim Biophys Acta 598:40–50

    PubMed  Google Scholar 

  • Smith PL, Orellana SA, Field M (1981) Active sulfate absorption in rabbit ileum: dependence on sodium and chloride and effects of agents that alter chloride transport. J Membr Biol 63:199–206

    Article  PubMed  Google Scholar 

  • Snow JW, Vincentelli J, Brandts JF (1981) A relationship between anion transport and a structural transition of the human erythrocyte membrane. Biochim Biophys Acta 642:418–428

    PubMed  Google Scholar 

  • Solomon AK, Chasan B, Dix JA, Lukacovic MF, Toon MR, Verkman AS (1982) The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, non electrolytes and water. Biophys J 37:215a

    Google Scholar 

  • Solomon AK, Chasan B, Dix JA, Lukacovic MF, Toon MR, Verkman AS (1983) The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, non-electrolytes, and water. Ann NY Acad Sci 414:97–124

    PubMed  Google Scholar 

  • Staros JV, Kakkad BP (1983) Cross-linking and chymotryptic digestion of the extra cytoplasmic domain of the anion exchange channel in intact human erythrocytes. J Membr Biol 74:247–254

    PubMed  Google Scholar 

  • Steck TL (1972) Cross-linking the major proteins of the isolated erythrocyte membrane. J Mol Biol 66:295–305

    Article  PubMed  Google Scholar 

  • Steck TL (1974) The organization of proteins in the human red cell membrane. J Cell Biol 62:1–19

    Article  PubMed  Google Scholar 

  • Steck TL (1978) The band 3 protein of the human red cell membrane: a review. J Supramol Struct 8:311–324

    Article  PubMed  Google Scholar 

  • Steck TL, Yu J (1973) The selective solubilization of proteins from red blood cell membranes by protein pertubants. J Supramol Struct 1:220–232

    Article  PubMed  Google Scholar 

  • Steck TL, Ramos B, Strapazon E (1976) Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry 15:1154–1161

    Article  Google Scholar 

  • Steck TL, Koziarz JJ, Singh MK, Reddy G, Köhler H (1978) Preparation and analysis of seven major, topographically defined fragments of band 3, the predominant transmembrane polypeptide of human erythrocyte membranes. Biochemistry 17:1216–1222

    PubMed  Google Scholar 

  • Strapazon E, Steck TL (1976) Binding of rabbit muscle aldolase to band 3, the predominant polypeptide of the human erythrocyte membrane. Biochemistry 15:1421–1424

    Article  PubMed  Google Scholar 

  • Strapazon E, Steck TL (1977) Interaction of the aldolase and the membrane of human erythrocytes. Biochemistry 16:2966–2971

    Article  PubMed  Google Scholar 

  • Tanford C (1962) The interpretation of hydrogen ion titration curves of proteins. Adv Protein Chem 17:69–165

    Google Scholar 

  • Tanford C (1985) Simple model can explain self-inhibition of red cell anion exchange. Biophys J 47:15–20

    PubMed  Google Scholar 

  • Tanner MJA (1979) Isolation of integral membrane proteins and criteria for identifying carrier proteins. Curr Top Membr Transp 12:1–51

    Google Scholar 

  • Tanner MJA, Anstee DJ (1976) A method for the direct demonstration of the lectin-binding components of the human erythrocyte membrane. Biochem J 153:265–270

    PubMed  Google Scholar 

  • Tanner MJA, Williams DG, Jenkins RE (1980) Structure of the erythrocyte anion transport proteins. Ann NY Acad Sci 341:455–464

    PubMed  Google Scholar 

  • Tosteson DC, Gunn RB, Wieth JO (1973) Chloride and hydroxyl ion conductance of sheep red cell membrane. In: Gerlach E, Moser K, Deutsch E, Wilmanns W (eds) Erythrocytes, thrombocytes, leucocytes. Thieme, Stuttgart, pp 62–69

    Google Scholar 

  • Tsai IH, Murthy SP, Steck TL (1982) Effect of red cell membrane binding on the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 257:1438–1442

    PubMed  Google Scholar 

  • Tsuji T, Irimura T, Osawa T (1980) The carbohydrate moiety of band 3 glycoprotein of human erythrocyte membranes. Biochem J 187:677–686

    PubMed  Google Scholar 

  • Tsuji T, Irimura T, Osawa T (1981) The carbohydrate moiety of band 3 glycoprotein of human erythrocyte membranes. Structure of lower molecular weight oligosaccharides. J Biol Chem 256:10497–10502

    PubMed  Google Scholar 

  • Van Hoogevest P, Van Duijn G, Batenburg AM, De Kruijff B, De Gier J (1983) The anion permeability of vesicles reconstituted with intrinsic proteins from the human erythrocyte membrane. Biochim Biophys Acta 734:1–17

    PubMed  Google Scholar 

  • Verkman AS, Dix JA, Solomon AK (1981) Thermodynamics of stilbene binding sites on human red cell band 3. Biophys J 33:48a

    Google Scholar 

  • Verkman AS, Dix JA, Solomon AK (1982) A non-competitive 'shunt’ pathway for the effect of chloride on the band 3-DBDS conformational change in red cell membranes. Biophys J 37:216a

    Google Scholar 

  • Verkman AS, Dix JA, Solomon AK (1983) Anion transport inhibitor binding to band 3 in red blood cell membranes. J Gen Physiol 81:421–449

    Article  PubMed  Google Scholar 

  • Wang K, Richards FM (1974) An approach to nearest neighbour analysis of membrane proteins. J Biol Chem 249:8005–8018

    PubMed  Google Scholar 

  • Wang K, Richards FM (1975) Reaction of dimethyl-3,3′-dithiobispropionimidate with intact human erythrocytes. Cross-linking of membrane proteins and hemoglobin. J Biol Chem 250:6622–6626

    PubMed  Google Scholar 

  • Weinstein RS, Khodadad JK, Steck TL (1978) Fine structure of the band 3 protein in human red cell membranes: freeze-fracture studies. J Supramol Struct 8:325–335

    Article  PubMed  Google Scholar 

  • Weinstein RS, Khodadad JK, Steck TL (1980) The band 3 protein intramembrane particle of the human red blood cell. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 35–48 (Alfred Benzon Symposium 14)

    Google Scholar 

  • Wiedemann B, Elbaum D (1983) Effect of hemoglobin A and S in human erythrocyte ghosts. J Biol Chem 258:5483–5489

    PubMed  Google Scholar 

  • Wieth JO (1979) Bicarbonate exchange through the human red cell membrane determined with 14C-bicarbonate. J Physiol 294:521–539

    PubMed  Google Scholar 

  • Wieth JO, Bjerrum PJ (1982) Titration of transport and modifier sites in the red cell anion transport system. J Gen Physiol 79:253–282

    Article  PubMed  Google Scholar 

  • Wieth JO, Bjerrum PJ (1983) Transport and modifier sites in capnophorin, the anion transport protein of the erythrocyte membrane. In: Quagliariello E, Palmieri F (eds) Structure and function of membrane proteins. Elsevier, Amsterdam, pp 95–106

    Google Scholar 

  • Wieth JO, Brahm J (1980) Kinetics of bicarbonate exchange in human red cells — physiological implications. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 467–482 (Alfred Benzon Symposium 14)

    Google Scholar 

  • Wieth JO, Brahm J (1985) Cellular anion transport. In: Seldin DW, Giebisch G (eds) Physiology and pathophysiology. The kidney, vol I. Raven, New York, pp 49–89

    Google Scholar 

  • Wieth JO, Brahm J, Funder J (1980) Transport and interactions of anions and protons in the red blood cell membrane. Ann NY Acad Sci 341:394–418

    PubMed  Google Scholar 

  • Wieth JO, Andersen OS, Brahm J, Bjerrum PJ, Borders CL (1982a) Chloride-bicarbonate exchange in red blood cells. Philos Trans R Soc Lond (Biol) 299:383–399

    Google Scholar 

  • Wieth JO, Bjerrum PJ, Andersen OS (1982b) The anion transport protein of the red cell membrane. A zipper mechanism of anion exchange. Tokai J Exp Clin Med 7:91–101

    PubMed  Google Scholar 

  • Wieth JO, Bjerrum PJ, Borders CL (1982c) Irreversible inactivation of red cell chloride exchange with phenylgloxal, an arginine-specific reagent. J Gen Physiol 79:283–312

    Article  PubMed  Google Scholar 

  • Williams DG, Jenkins RE, Tanner MJA (1979) Structure of the anion-transport protein of the human erythrocyte membrane. Further studies on the fragment produced by proteolytic digestion. Biochem J 181:477–493

    PubMed  Google Scholar 

  • Yeltman DR, Harris BG (1980) Localization and membrane association of aldolase in human erythrocytes. Arch Biochem Biophys 199:186–196

    Article  PubMed  Google Scholar 

  • Yoon SC, Toon MR, Solomon AK (1984) Relation between red cell anion exchange and water transport. Biochim Biophys Acta 778:385–389

    PubMed  Google Scholar 

  • Yu J, Steck TL (1975) Associations of band 3, the predominant polypeptide of the human erythrocyte membrane. J Biol Chem 250:9170–9175

    PubMed  Google Scholar 

  • Yu J, Fischman DA, Steck TL (1973) Selective solubilization of proteins and phospholipids from red cell membranes by non-ionic detergents. J Supramol Struct 1:233–248

    Article  PubMed  Google Scholar 

  • Zaki L (1981) Inhibition of anion transport across red blood cells with 1,2-cyclohexanedione. Biochem Biophys Res Comm 99:243–251

    Article  PubMed  Google Scholar 

  • Zaki L (1982) The effect of arginine specific reagents on anion transport across the red blood cells. Protides Biol Fluids 29:279–282

    Google Scholar 

  • Zaki L (1983) Anion transport in red blood cells and arginine specific reagents. (1) Effect of chloride and sulfate ions on phenylglyoxal sensitive sites in the red blood cell membrane. Biochem Biophys Res Comm 110:616–624

    Article  PubMed  Google Scholar 

  • Zaki L (1984) Anion transport in red blood cells and arginine-specific reagents. The location of 14C phenylglyoxal binding sites in the anion transport protein in the membrane of human red cells. FEBS Lett 169:234–240

    Article  PubMed  Google Scholar 

  • Zaki L, Julien T (1983) Inactivation of the anion transport system in the red blood cell membrane by α-dicarbonyl reagents. Hoppe-Seyler's Z Physiol Chem 364:1233

    Google Scholar 

  • Zaki L, Julien T (1985) Anion transport in red blood cells and arginine specific reagents. Interaction between the substrate binding site and the binding site of arginine specific reagents. Biochim Biophys Acta 818:325–332

    PubMed  Google Scholar 

  • Zaki L, Fasold H, Schumann B, Passow H (1975) Chemical modification of membrane proteins in relation to inhibition of anion exchange in human red blood cells. J Cell Physiol 36:471–494

    Article  Google Scholar 

  • Zwaal RF, Roelofsen B, Colley CM (1973) Localisation of red cell membrane constituents. Biochim Biophys Acta 300:159–182

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this chapter

Cite this chapter

Passow, H. (1986). Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 103. Reviews of Physiology, Biochemistry and Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540153330_2

Download citation

  • DOI: https://doi.org/10.1007/3540153330_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15333-7

  • Online ISBN: 978-3-540-39420-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics