Skip to main content

Green Fluorescent Protein Photodynamics as a Tool for Fluorescence Correlative Studies and Applications

  • Chapter
  • First Online:
Fluorescent Proteins II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 12))

  • 1568 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  Google Scholar 

  2. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  3. Jung G, Zumbusch A (2006) Improving autofluorescent proteins: comparative studies of the effective brightness of green fluorescent protein (GFP) mutants. Micr Res Tech 69:175–185

    Article  CAS  Google Scholar 

  4. Hsu ST, Blaser G, Jackson SE (2009) The folding, stability and conformational dynamics of beta-barrel fluorescent proteins. Chem Soc Rev 38:2951–2965

    Article  CAS  Google Scholar 

  5. Miyawaki A, Sawano A, Kogure T (2003) Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol Suppl S1–7

    Google Scholar 

  6. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91

    Article  CAS  Google Scholar 

  7. Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S, Lukyanov KA (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21:191–194

    Article  CAS  Google Scholar 

  8. Post JN, Lidke KA, Rieger B, Anrdt-Jovin DJ (2005) One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Lett 579:325–330

    Article  CAS  Google Scholar 

  9. Kim PK, Mullen RT, Schumann U, Lippincott-Schwartz J (2006) The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J Cell Biol 173:521–532

    Article  CAS  Google Scholar 

  10. Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behavior of single molecules of green fluorescent protein. Nature 388:355–358

    Article  CAS  Google Scholar 

  11. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921

    Article  CAS  Google Scholar 

  12. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    Article  CAS  Google Scholar 

  13. Lippincott-Schwartz J, Patterson GH (2008) Fluorescent proteins for photoactivation experiments. Methods Cell Biol 85:45–61

    Article  CAS  Google Scholar 

  14. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  Google Scholar 

  15. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced greento- red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656

    Article  CAS  Google Scholar 

  16. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–1373

    Article  CAS  Google Scholar 

  17. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol Suppl S7–14

    Google Scholar 

  18. Cinelli RAG, Pellegrini V, Ferrari A, Faraci P, Nifosi R, Tyagi M, Giacca M, Beltram F (2001) Green fluorescent proteins as optically controllable elements in bioelectronics. Appl Phys Lett 79:3353–3355

    Article  CAS  Google Scholar 

  19. Bizzarri R, Serresi M, Cardarelli F, Abbruzzetti S, Campanini B, Viappiani C, Beltram F (2010) Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable. J Am Chem Soc 132:85–95

    Article  CAS  Google Scholar 

  20. Habuchi S, Ando R, Dedecker P, Verheijen W, Mizuno H, Miyawaki A, Hofkens J (2005) Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci USA 102:9511–9516

    Article  CAS  Google Scholar 

  21. Hell SW, Jakobs S, Kastrup L (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys A Mater Sci Process 77:859–860

    Article  CAS  Google Scholar 

  22. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 102:17565–17569

    Article  CAS  Google Scholar 

  23. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159

    Article  CAS  Google Scholar 

  24. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  Google Scholar 

  25. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  Google Scholar 

  26. Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, Andresen M, Stiel AC, Jakobs S, Eggeling C, Schönle A, Hell SW (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93:3285–3290

    Article  CAS  Google Scholar 

  27. Flors C, Hotta J, Uji-i H, Dedecker P, Ando R, Mizuno H, Miyawaki A, Hofkens J (2007) A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. J Am Chem Soc 129:13970–13977

    Article  CAS  Google Scholar 

  28. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. PNAS 102:17565–17569

    Article  CAS  Google Scholar 

  29. Luin S, Voliani V, Lanza G, Bizzarri R, Amat P, Tozzini V, Serresi M, Beltram F (2009) Raman study of cromophore states in photochromic fluorescent proteins. J Am Chem Soc 131:96–103

    Article  CAS  Google Scholar 

  30. Andresen M, Stiel AC, Trowitzsch S, Weber G, Eggeling C, Wahl MC, Hell SW, Jakobs S (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci USA 104:13005–13009

    Article  CAS  Google Scholar 

  31. Andresen M, Wahl MC, Stiel AC, Gräter F, Schäfer LV, Trowitzsch S, Weber G, Eggeling C, Grubmüller H, Hell SW, Jakobs S (2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci USA 102:13070–13074

    Article  CAS  Google Scholar 

  32. Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C, Hell SW, Jakobs S, Wahl MC (2007) 1.8 Å bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402:35–42

    Article  CAS  Google Scholar 

  33. Moerner WE (2002) Single-molecule optical spectroscopy of autofluorescent proteins. J Chem Phys 117:10925–10937

    Article  CAS  Google Scholar 

  34. Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95:13573–13578

    Article  CAS  Google Scholar 

  35. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Inst 74:3597–3619

    Article  CAS  Google Scholar 

  36. Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    Article  CAS  Google Scholar 

  37. Marriott G, Mao S, Sakata T, Ran J, Jackson DK, Petchprayoon C, Gomez TJ, Warp E, Tulyathan O, Aaron HL, Isacoff EY, Yan Y (2008) Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells. Proc Natl Acad Sci USA 105:17789–17794

    Article  CAS  Google Scholar 

  38. Quercioli V, Bosisio C, Daglio SC, Rocca F, D'Alfonso L, Collini M, Baldini G, Chirico G, Bettati S, Raboni S, Campanini B (2010) Photoinduced millisecond switching kinetics in the GFPMut2 E222Q mutant. J Phys Chem B 114:4664–4677

    Article  CAS  Google Scholar 

  39. Jung G, Brauchle C, Zumbusch A (2001) Two-color fluorescence correlation spectroscopy of one chromophore: application to the E222Q mutant of the green fluorescent protein. J Chem Phys 114:3149–3156

    Article  CAS  Google Scholar 

  40. Zimmer M (2002) Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102:759–781

    Article  CAS  Google Scholar 

  41. Jung G, Wiehler J, Zumbusch A (2005) The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222. Biophys J 88:1932–1947

    Article  CAS  Google Scholar 

  42. Heilemann M, Margeat E, Kasper R, Sauer M, Tinnefeld P (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127:3801–3806

    Article  CAS  Google Scholar 

  43. Patterson GH, Piston DW (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78:2159–2162

    Article  CAS  Google Scholar 

  44. Seefeldt B, Kasper R, Seidel T, Tinnefeld P, Dietz K-J, Heilemann M, Sauer M (2008) Fluorescent proteins for single-molecule fluorescence applications. J Biophoton 1:74–82

    Google Scholar 

  45. Eggeling C, Hilbert M, Bock H, Ringemann C, Hofmann M, Stiel AC, Andresen M, Jakobs S, Egner A, Schoenle A, Hell SW (2007) Reversible photoswitching enables single-molecule fluorescence fluctuation spectroscopy at high molecular concentration. Micr Res Tech 70:1003–1009

    Article  CAS  Google Scholar 

  46. Bizzarri R, Arcangeli C, Arosio D, Ricci F, Faraci P, Cardarelli F, Beltram F (2006) Development of a novel GFP-based ratiometric excitation and emission pH indicator for intracellular studies. Biophys J 90:3300–3314

    Article  CAS  Google Scholar 

  47. Bizzarri R, Serresi M, Luin S, Beltram F (2009) Green fluorescent protein based pH indicators for in vivo use: a review. Anal Bioanal Chem 393:1107–1122

    Article  CAS  Google Scholar 

  48. Schwille P, Haupts U, Maiti S, Webb WW (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77:2251–2265

    Article  CAS  Google Scholar 

  49. Bosisio C, Quercioli V, Collini M, D’Alfonso L, Baldini G, Bettati S, Campanini B, Raboni S, Chirico G (2008) Protonation and conformational dynamics of GFP mutants by two-photon excitation fluorescence correlation spectroscopy. J Phys Chem B 112:8806–8814

    Article  CAS  Google Scholar 

  50. Malvezzi-Campeggi F, Jahnz M, Heinze KG, Dittrich P, Schwille P (2001) Light-induced flickering of DsRed provides evidence for distinct and interconvertible fluorescent states. Biophys J 81:1776–1785

    Article  CAS  Google Scholar 

  51. Wang ZF, Shah JV, Chen ZP, Sun CH, Berns MW (2004) Fluorescence correlation spectroscopy investigation of a GFP mutant-enhanced cyan fluorescent protein and its tubulin fusion in living cells with two-photon excitation. J Biomed Opt 9:395–403

    Article  CAS  Google Scholar 

  52. Jung G, Werner M, Schneider M (2008) Efficient photoconversion distorts the fluorescence lifetime of GFP in confocal microscopy: a model kinetic study on mutant Thr203Val. ChemPhysChem 9:1867–1874

    Article  CAS  Google Scholar 

  53. Chirico G, Cannone F, Baldini G, Diaspro A (2003) Two-photon thermal bleaching of single fluorescent molecules. Biophys J 84:588–598

    Article  CAS  Google Scholar 

  54. Kim SA, Heinze KG, Bacia K, Waxham MN, Schwille P (2005) Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys J 88:4319–4336

    Article  CAS  Google Scholar 

  55. Nifosì R, Tozzini V (2006) Cis–trans photoisomerization of the chromophore in the green fluorescent protein variant E2GFP: a molecular dynamics study. Chem Phys 323:358–368

    Article  Google Scholar 

  56. Wong FHC, Banks DS, Abu-Arish A, Fradin C (2007) A molecular thermometer based on fluorescent protein blinking. J Am Chem Soc 129:10302–10303

    Article  CAS  Google Scholar 

  57. Cannone F, Milani R, Chirico G, Diaspro A, Krol S, Campanini B (2007) Voltage regulation of single green fluorescent protein mutants. Biophys Chem 125:368–374

    Article  CAS  Google Scholar 

  58. Paradise A, Levin MK, Korza G, Carson JH (2007) Significant proportions of with reduced intracellular nuclear transport proteins mobilities resolved by fluorescence correlation spectroscopy. J Mol Biol 365:50–65

    Article  CAS  Google Scholar 

  59. Wang Z, Shah JV, Berns MW, Cleveland DW (2006) In vivo quantitative studies of dynamic intracellular processes using fluorescence correlation spectroscopy. Biophys J 91:343–351

    Article  CAS  Google Scholar 

  60. Reiff DF, Ihring A, Guerrero G, Isacoff EY, Joesch M, Nakai J, Borst A (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25:4766–4778

    Article  CAS  Google Scholar 

  61. Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38

    Article  CAS  Google Scholar 

  62. Abbruzzetti S, Grandi E, Viappiani C, Bologna S, Campanini B, Raboni S, Bettati S, Mozzarelli A (2005) Kinetics of acid-induced spectral changes in the GFPmut2 chromophore. J Am Chem Soc 127:626–635

    Article  CAS  Google Scholar 

  63. Chirico G, Diaspro A, Cannone F, Collini M, Bologna S, Pellegrini V, Beltram F (2005) Selective fluorescence recovery after bleaching of single E(2)GFP proteins induced by two-photon excitation. ChemPhysChem 6:328–335

    Article  CAS  Google Scholar 

  64. Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA 93:8362–8367

    Article  CAS  Google Scholar 

  65. Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY, Ormo M, Remington SJ (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci USA 94:2306–2311

    Article  CAS  Google Scholar 

  66. Lossau H, Kummer A, Heinecke R, Pollinger-Dammer F, Kompa C, Bieser G, Jonsson T, Silva CM, Yang MM, Youvan DC, Michel-Beyerle ME (1996) Time-resolved spectroscopy of wild-type and mutant green fluorescent proteins reveals excited state deprotonation consistent with fluorophore-protein interactions. Chem Phys 213:1–16

    Article  CAS  Google Scholar 

  67. Stoner-Ma D, Jaye AA, Ronayne KL, Nappa J, Meech SR, Tonge PJ (2008) An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP. J Am Chem Soc 130:1227–1235

    Article  CAS  Google Scholar 

  68. Jung G, Wiehler J, Steipe B, Bräuchle C, Zumbusch A (2001) Single-molecule microscopy of the green fluorescent protein using simultaneous two-color excitation. ChemPhysChem 6:392–396

    Article  Google Scholar 

  69. Cinelli RAG, Pellegrini V, Ferrari A, Faraci P, Nifosì R, Tyagi M, Giacca M, Beltram F (2001) Green fluorescent proteins as optically-controllable elements in bioelectronics. Appl Phys Lett 79:3353–3355

    Article  CAS  Google Scholar 

  70. Yokoe H, Meyer T (1996) Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat Biotech 14:1252–1256

    Article  CAS  Google Scholar 

  71. Redmond RW, Kochevar IE, Krieg M, Smith G, McGimpsey WG (1997) Excited state relaxation in cyanine dyes: a remarkably efficient reverse intersystem crossing from upper triplet levels. J Phys Chem A 101:2773–2777

    Article  CAS  Google Scholar 

  72. Widengren J, Seidel CAM (2000) Manipulation and characterization of photo-induced transient states of merocyanine 540 by fluorescence correlation spectroscopy. Phys Chem Chem Phys 2:3435–3441

    Article  CAS  Google Scholar 

  73. Huang Z, Ji D, Xia A (2005) Fluorescence intensity and lifetime fluctuations of single Cy5 molecules immobilized on the glass surface. Colloids Surf A Physicochem Eng Asp 257–258:203–209

    Article  Google Scholar 

  74. Larkin JM, Donaldson WR, Foster TH, Knox RS (1999) Reverse intersystem crossing from a triplet state of rose Bengal populated by sequential 532- + 1064-nm laser excitation. Chem Phys 244:319–330

    Article  CAS  Google Scholar 

  75. English DS, Harbron EJ, Barbara PF (2000) Probing photoinduced intersystem crossing by two-color. Double resonance single molecule spectroscopy. J Phys Chem A 104:9057–9061

    Article  CAS  Google Scholar 

  76. Ringemann C, Schönle A, Giske A, von Middendorff C, Hell SW, Eggeling C (2008) Enhancing fluorescence brightness: effect of reverse intersystem crossing studied by fluorescence fluctuation spectroscopy. ChemPhysChem 9:612–624

    Article  CAS  Google Scholar 

  77. Palm GJ, Zadnov A, Gaitanaris GA, Stauber R, Pavlakis GN, Wlodawer A (1997) The structural basis for spectral variations in green fluorescent protein. Nat Struct Biol 4:361–365

    Article  CAS  Google Scholar 

  78. Weber W, Helms V, McCammon JA, Langhoff PW (1999) Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc Natl Acad Sci USA 96:6177–6182

    Article  CAS  Google Scholar 

  79. Agmon N (2007) Kinetics of switchable proton escape from a proton-wire within green fluorescence protein. J Phys Chem B 111:7870–7878

    Article  CAS  Google Scholar 

  80. Heilemann M, Dedecker P, Hofkens J, Sauer M (2009) Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser Photon Rev 3:180–202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been also funded by the PRIN MIUR fund 2008 to M.C. (2008JZ4MLB) and by the FP7 program ENCITE (contract no. 201842) to G.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Chirico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chirico, G., Collini, M., D’Alfonso, L., Caccia, M., Daglio, S.C., Campanini, B. (2011). Green Fluorescent Protein Photodynamics as a Tool for Fluorescence Correlative Studies and Applications. In: Jung, G. (eds) Fluorescent Proteins II. Springer Series on Fluorescence, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_25

Download citation

Publish with us

Policies and ethics