Skip to main content

Tailoring Fluorescent Labels for Far-Field Nanoscopy

  • Chapter
  • First Online:
Far-Field Optical Nanoscopy

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 14))

Abstract

The choice of the fluorophore to be used in super-resolution far-field nanoscopy is an essential parameter that typically determines the quality of the resulting image. To overcome the diffraction limit, different super-resolution techniques exploit different optical and photochemical phenomena, imposing method-specific requirements for useful probes. The choice of the fluorophore is even more intimately tied to performance for super-resolution imaging in live cells, where both photophysical properties and target-specific labeling inside the cell are essential. In this chapter, we highlight the advances in fluorophore development for a range of existing super-resolution techniques. We discuss the requirements these distinct methods place on the fluorophores in order to achieve optimal resolution, particularly as these methods move toward imaging living cells beyond the diffraction limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058

    Article  CAS  Google Scholar 

  2. Patterson G et al (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367

    Article  CAS  Google Scholar 

  3. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    Article  CAS  Google Scholar 

  4. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943

    Article  CAS  Google Scholar 

  5. Heilemann M et al (2009) Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser Photon Rev 3(1–2):180–202

    Article  CAS  Google Scholar 

  6. Haugland RP (2002) Handbook of Fluorescent Probes and Research Products, 9th ed.; Molecular Probes Inc: Eugene, OR

    Google Scholar 

  7. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  Google Scholar 

  8. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6(1):24–32

    Article  CAS  Google Scholar 

  9. Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy–a concept for optical resolution improvement. J Opt Soc Am A Opt Image Sci Vis 19(8):1599–1609

    Article  Google Scholar 

  10. Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086

    Article  CAS  Google Scholar 

  11. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21(11):1347–1355

    Article  CAS  Google Scholar 

  12. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  Google Scholar 

  13. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    Article  CAS  Google Scholar 

  14. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  Google Scholar 

  15. Heilemann M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47(33):6172–6176

    Article  CAS  Google Scholar 

  16. van de Linde S et al (2009) Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochem Photobiol Sci 8(4):465–469

    Article  Google Scholar 

  17. Dertinger T et al (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106(52):22287–22292

    Article  CAS  Google Scholar 

  18. Dertinger T et al (2010) Superresolution optical fluctuation imaging with organic dyes. Angew Chem Int Ed Engl 49(49):9441–9443

    Article  CAS  Google Scholar 

  19. Hotta J et al (2010) Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. J Am Chem Soc 132(14):5021–5023

    Article  CAS  Google Scholar 

  20. Westphal V et al (2007) Fluorescence depletion mechanisms in super-resolving STED microscopy. Chem Phys Lett 442(4–6):483–487

    Google Scholar 

  21. Donnert G et al (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103(31):11440–11445

    Article  CAS  Google Scholar 

  22. Tinnefeld P et al (2004) Higher-excited-state photophysical pathways in multichromophoric systems revealed by single-molecule fluorescence spectroscopy. Chemphyschem 5(11):1786–1790

    Article  CAS  Google Scholar 

  23. Hofmann M et al (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102(49):17565–17569

    Article  CAS  Google Scholar 

  24. Bates M et al (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753

    Article  CAS  Google Scholar 

  25. Folling J et al (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945

    Article  Google Scholar 

  26. van de Linde S et al (2008) Photoswitching microscopy with standard fluorophores. Appl Phys B 93(4):725–731

    Article  Google Scholar 

  27. Steinhauer C et al (2008) Superresolution microscopy on the basis of engineered dark states. J Am Chem Soc 130(50):16840–16841

    Article  CAS  Google Scholar 

  28. Vogelsang J et al (2010) Make them blink: probes for super-resolution microscopy. Chemphyschem 11(12):2475–2490

    Article  CAS  Google Scholar 

  29. Heilemann M et al (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48(37):6903–6908

    Article  CAS  Google Scholar 

  30. Dempsey GT et al (2009) Photoswitching mechanism of cyanine dyes. J Am Chem Soc 131(51):18192–18193

    Article  CAS  Google Scholar 

  31. Wombacher R et al (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7(9):717–719

    Article  CAS  Google Scholar 

  32. Klein T et al (2011) Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 8(1):7–9

    Article  CAS  Google Scholar 

  33. Testa I et al (2010) Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J 99(8):2686–2694

    Article  CAS  Google Scholar 

  34. Izeddin I et al (2011) Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertable actin probe. PLoS One 6(1):e 15611

    Article  CAS  Google Scholar 

  35. Xie XS, Elf J, Li GW (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316(5828):1191–1194

    Article  Google Scholar 

  36. Moore I, Murphy A (2009) Validating the location of fluorescent protein fusions in the endomembrane system. Plant Cell 21(6):1632–1636

    Article  CAS  Google Scholar 

  37. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120(Pt 24):4247–4260

    Article  CAS  Google Scholar 

  38. Shroff H et al (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423

    Article  CAS  Google Scholar 

  39. Kolmakov K et al (2010) A versatile route to red-emitting carbopyronine dyes for optical microscopy and nanoscopy. European J Org Chem 19:3593–3610

    Article  Google Scholar 

  40. Mitronova GY et al (2010) New fluorinated rhodamines for optical microscopy and nanoscopy. Chem Eur J 16(15):4477–4488

    Article  CAS  Google Scholar 

  41. Kolmakov K et al (2010) Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy. Chem Eur J 16(1):158–166

    Article  CAS  Google Scholar 

  42. Peneva K et al (2008) Water-soluble monofunctional perylene and terrylene dyes: powerful labels for single-enzyme tracking. Angew Chem Int Ed Engl 47(18):3372–3375

    Article  CAS  Google Scholar 

  43. Jung C et al (2009) Photophysics of New water-soluble terrylenediimide derivatives and applications in biology. Chemphyschem 10(1):180–190

    Article  CAS  Google Scholar 

  44. Howarth M et al (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5(5):397–399

    Article  CAS  Google Scholar 

  45. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Article  CAS  Google Scholar 

  46. Ballou B et al (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15(1):79–86

    Article  CAS  Google Scholar 

  47. Rittweger E et al (2009) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3(3):144–147

    Article  CAS  Google Scholar 

  48. Han KY et al (2009) Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett 9(9):3323–3329

    Article  CAS  Google Scholar 

  49. Gee KR, Weinberg ES, Kozlowski DJ (2001) Caged Q-rhodamine dextran: a new photoactivated fluorescent tracer. Bioorg Med Chem Lett 11(16):2181–2183

    Article  CAS  Google Scholar 

  50. Maurel D et al (2010) Photoactivatable and photoconvertable fluorescent probes for protein labeling. ACS Chem Biol 5(5):507–516

    Article  CAS  Google Scholar 

  51. Belov VN et al (2010) Rhodamines NN: a novel class of caged fluorescent dyes. Angew Chem Int Ed Engl 49(20):3520–3523

    Article  CAS  Google Scholar 

  52. Lord SJ et al (2010) Azido push-pull fluorogens photoactivate to produce bright fluorescent labels. J Phys Chem B 114(45):14157–14167

    Article  CAS  Google Scholar 

  53. Lord SJ et al (2008) A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. J Am Chem Soc 130(29):9204–9205

    Article  CAS  Google Scholar 

  54. Minkin VI (2004) Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem Rev 104(5):2751–2776

    Article  CAS  Google Scholar 

  55. Irie M et al (2002) Organic chemistry: a digital fluorescent molecular photoswitch. Nature 420(6917):759–760

    Article  CAS  Google Scholar 

  56. Takami S et al (2003) Extraordinarily high thermal stability of the closed-ring isomer of 1,2-bis(5-methyl-2-phenylthiazol-4-yl)perfluorocyclopentene. Chem Lett 32(10):892–893

    Article  CAS  Google Scholar 

  57. Folling J et al (2008) Synthesis and characterization of photoswitchable fluorescent silica nanoparticles. Small 4(1):134–142

    Article  Google Scholar 

  58. Diaz SA et al (2011) Photoswitchable water-soluble quantum dots: pcFRET based on amphiphilic photochromic polymer coating. ACS Nano 5(4):2795–2805

    Article  CAS  Google Scholar 

  59. Folling J et al (2007) Photochromic rhodamines provide nanoscopy with optical sectioning. Angew Chem Int Ed Engl 46(33):6266–6270

    Article  CAS  Google Scholar 

  60. Belov VN et al (2009) Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy. Chem Eur J 15(41):10762–10776

    Article  CAS  Google Scholar 

  61. Bossi M et al (2008) Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett 8(8):2463–2468

    Article  CAS  Google Scholar 

  62. Conley NR, Biteen JS, Moerner WE (2008) Cy3-Cy5 covalent heterodimers for single-molecule photoswitching. J Phys Chem B 112(38):11878–11880

    Article  CAS  Google Scholar 

  63. Los GV et al (2005) The HaloTag (TM): a novel technology for cellular analysis. J Neurochem 94:15

    Google Scholar 

  64. Keppler A et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21(1):86–89

    Article  CAS  Google Scholar 

  65. Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 21(6):766–776

    Article  CAS  Google Scholar 

  66. Srikun D et al (2010) Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling. J Am Chem Soc 132(12):4455–4465

    Article  CAS  Google Scholar 

  67. Lippard SJ et al (2008) Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. J Am Chem Soc 130(47):15776

    Article  Google Scholar 

  68. Hein B et al (2010) Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. Biophys J 98(1):158–163

    Article  CAS  Google Scholar 

  69. Dellagiacoma C et al (2010) Targeted photoswitchable probe for nanoscopy of biological structures. Chembiochem 11(10):1361–1363

    Article  CAS  Google Scholar 

  70. George N et al (2004) Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc 126(29):8896–8897

    Article  CAS  Google Scholar 

  71. Zhou Z et al (2008) An eight residue fragment of an acyl carrier protein suffices for post-translational introduction of fluorescent pantetheinyl arms in protein modification in vitro and in vivo. J Am Chem Soc 130(30):9925–9930

    Article  CAS  Google Scholar 

  72. Slavoff SA et al (2008) Expanding the substrate tolerance of biotin ligase through exploration of enzymes from diverse species. J Am Chem Soc 130(4):1160–1162

    Article  CAS  Google Scholar 

  73. de Boer E et al (2003) Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 100(13):7480–7485

    Article  Google Scholar 

  74. Uttamapinant C et al (2010) A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl Acad Sci U S A 107(24):10914–10919

    Article  CAS  Google Scholar 

  75. Fernandez-Suarez M et al (2007) Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotechnol 25(12):1483–1487

    Article  CAS  Google Scholar 

  76. Wang L, Schultz PG (2004) Expanding the genetic code. Angew Chem Int Ed Engl 44(1):34–66

    Article  Google Scholar 

  77. Deiters A, Schultz PG (2005) In vivo incorporation of an alkyne into proteins in Escherichia coli. Bioorg Med Chem Lett 15(5):1521–1524

    Article  CAS  Google Scholar 

  78. Summerer D et al (2006) A genetically encoded fluorescent amino acid. Proc Natl Acad Sci U S A 103(26):9785–9789

    Article  CAS  Google Scholar 

  79. Wang J, Xie J, Schultz PG (2006) A genetically encoded fluorescent amino acid. J Am Chem Soc 128(27):8738–8739

    Article  CAS  Google Scholar 

  80. Sivakumar K et al (2004) A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org Lett 6(24):4603–4606

    Article  CAS  Google Scholar 

  81. Zhou Z, Fahrni CJ (2004) A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n, pi)-1(pi, pi) inversion. J Am Chem Soc 126(29):8862–8863

    Article  CAS  Google Scholar 

  82. Sawa M et al (2006) Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc Natl Acad Sci U S A 103(33):12371–12376

    Article  CAS  Google Scholar 

  83. Le Droumaguet C, Wang C, Wang Q (2010) Fluorogenic click reaction. Chem Soc Rev 39(4):1233–1239

    Article  Google Scholar 

  84. Beatty KE et al (2006) Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew Chem Int Ed Engl 45(44):7364–7367

    Article  CAS  Google Scholar 

  85. Jewett JC, Bertozzi CR (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39(4):1272–1279

    Article  CAS  Google Scholar 

  86. Neef AB, Schultz C (2009) Selective fluorescence labeling of lipids in living cells. Angew Chem Int Ed Engl 48(8):1498–1500

    Article  CAS  Google Scholar 

  87. Beatty KE et al (2010) Live-cell imaging of cellular proteins by a strain-promoted azide-alkyne cycloaddition. Chembiochem 11(15):2092–2095

    Article  CAS  Google Scholar 

  88. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281(5374):269–272

    Article  CAS  Google Scholar 

  89. Halo TL et al (2009) Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid. J Am Chem Soc 131(2):438–439

    Article  CAS  Google Scholar 

  90. Uchinomiya SH et al (2009) Site-specific covalent labeling of His-tag fused proteins with a reactive Ni(II)-NTA probe. Chem Commun (Camb) 39:5880–5882

    Article  Google Scholar 

  91. Nonaka H et al (2009) FLAG-tag selective covalent protein labeling via a binding-induced acyl-transfer reaction. Bioorg Med Chem Lett 19(23):6696–6699

    Article  CAS  Google Scholar 

  92. Ren H et al (2009) A biocompatible condensation reaction for the labeling of terminal cysteine residues on proteins. Angew Chem Int Ed Engl 48(51):9658–9662

    Article  CAS  Google Scholar 

  93. Szent-Gyorgyi C et al (2008) Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat Biotechnol 26(2):235–240

    Article  CAS  Google Scholar 

  94. Zanotti KJ et al (2011) Blue fluorescent dye-protein complexes based on fluorogenic cyanine dyes and single chain antibody fragments. Org Biomol Chem 9(4):1012–1020

    Article  CAS  Google Scholar 

  95. Fitzpatrick JA et al (2009) STED nanoscopy in living cells using fluorogen activating proteins. Bioconjug Chem 20(10):1843–1847

    Article  CAS  Google Scholar 

  96. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer Science, New York

    Book  Google Scholar 

  97. Loos D et al (2004) Single-molecule spectroscopy selectively probes donor and acceptor chromophores in the phycobiliprotein allophycocyanin. Biophys J 87(4):2598–2608

    Article  CAS  Google Scholar 

  98. Szent-Gyorgyi C et al (2010) Fluorogenic dendrons with multiple donor chromophores as bright genetically targeted and activated probes. J Am Chem Soc 132(32):11103–11109

    Article  CAS  Google Scholar 

  99. Gayda S, Hedde PN, Nienhaus K (2011) Probes for nanoscopy: fluorescent proteins. Springer Ser Fluoresc. doi:10.1007/4243_2011_34

    Google Scholar 

  100. AramendÚa PF, Bossi ML (2012) Probes for nanoscopy: photoswitchable fluorophores. Springer Ser Fluoresc. doi:10.1007/4243_2012_39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel P. Bruchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yushchenko, D.A., Bruchez, M.P. (2012). Tailoring Fluorescent Labels for Far-Field Nanoscopy. In: Tinnefeld, P., Eggeling, C., Hell, S. (eds) Far-Field Optical Nanoscopy. Springer Series on Fluorescence, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_35

Download citation

Publish with us

Policies and ethics