Skip to main content

Role of the Pico-Nano-Second Temporal Dimension in STED Microscopy

  • Chapter
  • First Online:
Perspectives on Fluorescence

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 17))

Abstract

In the last decades, several techniques have been developed to push the spatial resolution of far-field fluorescence microscopy beyond the diffraction limit. Stimulated emission depletion (STED) microscopy is a super-resolution technique in which the targeted switching off of the fluorophores by a secondary laser beam results in an effective increase in optical resolution. However, to fully exploit the maximum performances of a STED microscope (effective spatial resolution achievable for a given STED beam’s intensity, versatility, live-cell imaging capability, etc.) several experimental precautions have to be considered. In this respect, the temporal dimension (at the pico- and nanosecond scale) has often a central role on the overall efficiency and versatility of a STED microscope, working in pulsed or continuous-wave mode.

In pulsed STED, temporal alignment between the excitation and STED pulses has direct consequences on the maximum spatial resolution achievable by the STED microscope. In a specific pulsed STED implementation, called single wavelength two-photon excitation STED, the modulation of the temporal width of the pulse results in the use of the very same laser for excitation and depletion of the fluorophores. In continuous-wave (CW)-STED, the analysis of nanosecond fluorescence dynamics allows one to preserve the effective resolution of a STED microscope, but with a significant reduction of the illumination intensity. In this respect, we discuss two different approaches for the analysis of nanosecond dynamics in CW-STED images, namely the so-called gated-STED microscopy and Separation of Photons by LIfetime Tuning (SPLIT)-STED microscopy. Overall, these examples show that concepts developed in time-resolved fluorescence spectroscopy are important for the advancement of optical super-resolution microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cella Zanacchi F, Bianchini P, Vicidomini G (2014) Fluorescence microscopy in the spotlight. Microsc Res Tech 77(7):479–482

    Article  Google Scholar 

  2. Diaspro A (ed) (2009) Nanoscopy and multidimensional optical fluorescence microscopy. Chapman & Hall, Boca Raton

    Google Scholar 

  3. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21(11):1347–1355

    Article  CAS  Google Scholar 

  4. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6(1):24–32

    Article  CAS  Google Scholar 

  5. Hell SW, Sahl SJ, Bates M, Zhuang X, Heintzmann R, Booth MJ, Bewersdorf J, Shtengel G, Hess H, Tinnefeld P, Honigmann A, Jakobs S, Testa I, Cognet L, Lounis B, Ewers H, Davis SJ, Eggeling C, Klenerman D, Willig KI, Vicidomini G, Castello M, Diaspro A, Cordes T (2015) The 2015 super-resolution microscopy roadmap. J Phys D Appl Phys 48(44):443001

    Article  Google Scholar 

  6. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058

    Article  CAS  Google Scholar 

  7. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  Google Scholar 

  8. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106(52):22287–22292

    Article  CAS  Google Scholar 

  9. Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086

    Article  CAS  Google Scholar 

  10. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  Google Scholar 

  11. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    Article  CAS  Google Scholar 

  12. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102(49):17565–17569

    Article  CAS  Google Scholar 

  13. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  Google Scholar 

  14. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    Article  CAS  Google Scholar 

  15. Kastrup L, Hell SW (2004) Absolute optical cross section of individual fluorescent molecules. Angew Chem Int Ed Engl 43(48):6646–6649

    Article  CAS  Google Scholar 

  16. Galiani S, Harke B, Vicidomini G, Lignani G, Benfenati F, Diaspro A, Bianchini P (2012) Strategies to maximize the performance of a STED microscope. Opt Express 20(7):7362–7374

    Article  Google Scholar 

  17. Vicidomini G, Schonle A, Ta H, Han KY, Moneron G, Eggeling C, Hell SW (2013) STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS One 8(1), e54421

    Article  CAS  Google Scholar 

  18. Bianchini P, Harke B, Galiani S, Vicidomini G, Diaspro A (2012) Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging. Proc Natl Acad Sci U S A 109(17):6390–6393

    Article  CAS  Google Scholar 

  19. Moffitt JR, Osseforth C, Michaelis J (2011) Time-gating improves the spatial resolution of STED microscopy. Opt Express 19(5):4242–4254

    Article  Google Scholar 

  20. Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell SW (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8(7):571–573

    Article  CAS  Google Scholar 

  21. Coto Hernàndez I, d’Amora M, Diaspro A, Vicidomini G (2014) Influence of laser intensity noise on gated CW-STED microscopy. Laser Phys Lett 11(9):095603

    Article  Google Scholar 

  22. Vicidomini G, Coto Hernàndez I, Diaspro A, Galiani S, Eggeling C (2015) The importance of photon arrival times in STED microscopy. In: Kapusta P, Wahl M, Erdmann R (eds) Advanced photon counting, vol 15. Springer, Berlin/Heidelberg, pp 283–301

    Google Scholar 

  23. Vicidomini G, Hernandez IC, d’Amora M, Zanacchi FC, Bianchini P, Diaspro A (2014) Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation. Methods 66(2):124–130

    Article  CAS  Google Scholar 

  24. Lanzano L, Coto Hernandez I, Castello M, Gratton E, Diaspro A, Vicidomini G (2015) Encoding and decoding spatio-temporal information for super-resolution microscopy. Nat Commun 6:6701

    Article  CAS  Google Scholar 

  25. Coto Hernàndez I, Buttafava M, Boso G, Diaspro A, Tosi A, Vicidomini G (2015) Gated STED microscopy with time-gated single-photon avalanche diode. Biomed Opt Express 6(6):2258–2267

    Article  Google Scholar 

  26. Wu X, Toro L, Stefani E, Wu Y (2015) Ultrafast photon counting applied to resonant scanning STED microscopy. J Microsc 257(1):31–38

    Article  Google Scholar 

  27. Clayton AH, Hanley QS, Verveer PJ (2004) Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J Microsc 213(Pt 1):1–5

    Article  CAS  Google Scholar 

  28. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16

    Article  CAS  Google Scholar 

  29. Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15(5):805–815

    Article  CAS  Google Scholar 

  30. Weber G (1981) Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements. J Phys Chem 85(8):949–953

    Article  CAS  Google Scholar 

  31. Barreiro O, Zamai M, Yanez-Mo M, Tejera E, Lopez-Romero P, Monk PN, Gratton E, Caiolfa VR, Sanchez-Madrid F (2008) Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol 183(3):527–542

    Article  CAS  Google Scholar 

  32. Blaine J, Lanzano L, Giral H, Caldas Y, Levi M, Gratton E, Moldovan R, Lei T (2011) Dynamic imaging of the sodium phosphate cotransporters. Adv Chronic Kidney Dis 18(2):145–150

    Article  Google Scholar 

  33. Dobrinskikh E, Lanzano L, Rachelson J, Cranston D, Moldovan R, Lei T, Gratton E, Doctor RB (2013) Shank2 contributes to the apical retention and intracellular redistribution of NaPiIIa in OK cells. Am J Physiol Cell Physiol 304(6):C561–C573

    Article  CAS  Google Scholar 

  34. Giral H, Lanzano L, Caldas Y, Blaine J, Verlander JW, Lei T, Gratton E, Levi M (2011) Role of PDZK1 protein in apical membrane expression of renal sodium-coupled phosphate transporters. J Biol Chem 286(17):15032–15042

    Article  CAS  Google Scholar 

  35. Cutrale F, Salih A, Gratton E (2013) Spectral phasor approach for fingerprinting of photo-activatable fluorescent proteins Dronpa, Kaede and KikGR. Methods Appl Fluoresc 1(3):35001

    Article  Google Scholar 

  36. Fereidouni F, Bader AN, Colonna A, Gerritsen HC (2014) Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin. J Biophotonics 7(8):589–596

    Article  CAS  Google Scholar 

  37. Ranjit S, Lanzano L, Gratton E (2014) Mapping diffusion in a living cell via the phasor approach. Biophys J 107(12):2775–2785

    Article  CAS  Google Scholar 

  38. Castello M, Diaspro A, Vicidomini G (2014) Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy. Appl Phys Lett 105(23):234106

    Article  Google Scholar 

  39. Coto Hernández I, Castello M, Lanzanò L, d’Amora M, Bianchini P, Diaspro A, Vicidomini G (2016) Two-photon excitation STED microscopy with time-gated detection. Sci Rep 6:19419

    Article  Google Scholar 

  40. Enderlein J (2005) Breaking the diffraction limit with dynamic saturation optical microscopy. Appl Phys Lett 87(9):095105

    Article  Google Scholar 

  41. Humpolickova J, Benda A, Machan R, Enderlein J, Hof M (2010) Dynamic saturation optical microscopy: employing dark-state formation kinetics for resolution enhancement. Phys Chem Chem Phys 12(39):12457–12465

    Article  CAS  Google Scholar 

  42. Marsh RJ, Culley S, Bain AJ (2014) Low power super resolution fluorescence microscopy by lifetime modification and image reconstruction. Opt Express 22(10):12327–12338

    Article  Google Scholar 

  43. Yao J, Shcherbakova DM, Li C, Krumholz A, Lorca RA, Reinl E, England SK, Verkhusha VV, Wang LV (2014) Reversibly switchable fluorescence microscopy with enhanced resolution and image contrast. J Biomed Opt 19(8):086018

    Article  Google Scholar 

  44. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12(21):4161–4170

    Article  CAS  Google Scholar 

  45. Teale FW, Weber G (1957) Ultraviolet fluorescence of the aromatic amino acids. Biochem J 65(3):476–482

    Article  CAS  Google Scholar 

  46. Weber G (1952) Polarization of the fluorescence of macromolecules. I. Theory and experimental method. Biochem J 51(2):145–155

    Article  CAS  Google Scholar 

  47. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18(14):3075–3078

    Article  CAS  Google Scholar 

  48. Gratton E, Jameson DM, Hall RD (1984) Multifrequency phase and modulation fluorometry. Annu Rev Biophys Bioeng 13(1):105–124

    Article  CAS  Google Scholar 

  49. Giral H, Cranston D, Lanzano L, Caldas Y, Sutherland E, Rachelson J, Dobrinskikh E, Weinman EJ, Doctor RB, Gratton E, Levi M (2012) NHE3 regulatory factor 1 (NHERF1) modulates intestinal sodium-dependent phosphate transporter (NaPi-2b) expression in apical microvilli. J Biol Chem 287(42):35047–35056

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Diaspro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lanzanò, L., Scipioni, L., Castello, M., Bianchini, P., Vicidomini, G., Diaspro, A. (2016). Role of the Pico-Nano-Second Temporal Dimension in STED Microscopy. In: Jameson, D. (eds) Perspectives on Fluorescence. Springer Series on Fluorescence, vol 17. Springer, Cham. https://doi.org/10.1007/4243_2016_19

Download citation

Publish with us

Policies and ethics