Skip to main content

Some Main Group Chemical Perceptions in the Light of Experimental Charge Density Investigations

  • Chapter
  • First Online:
Electron Density and Chemical Bonding I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 146))

Abstract

The focus of this chapter lies on the deduction of chemical properties from charge density studies in some interesting, mainly main group element compounds. The relationship between these numerical data and commonly accepted simple chemical concepts is unfortunately not always straightforward, and often, the researcher relies on heuristic connections, rather than rigorously defined ones. In this chapter, we demonstrate how charge density analyses can shed light on aspects of chemical bonding and the chemical reactivity resulting from the determined bonding situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader RFW (1990) Atoms in molecules – a quantum theory. Oxford University Press, New York

    Google Scholar 

  2. Coppens P (1985) Coord Chem Rev 65:285–307

    CAS  Google Scholar 

  3. Koritsanszky T, Coppens P (2001) Chem Rev 101:1583–1627

    CAS  Google Scholar 

  4. Lecomte C, Souhassou M, Pillet S (2003) J Mol Struct 647:53–64

    Google Scholar 

  5. Macchi P, Sironi A (2003) Coord Chem Rev 238–239:383–412

    Google Scholar 

  6. Coppens P (2005) Angew Chem 117:6970–6972

    Google Scholar 

  7. Gatti C (2005) Z Kristallogr 220:399–457

    CAS  Google Scholar 

  8. Stalke D, Ott H (2008) Nachrichten aus der Chemie 56:131–135

    Google Scholar 

  9. Lewis GN (1916) J Am Chem Soc 38:762–785

    CAS  Google Scholar 

  10. Gillespie RJ, Silvi B (2002) Coord Chem Rev 233–234:53–62

    Google Scholar 

  11. Noury S, Silvi B (2002) Inorg Chem 41:2164–2172

    CAS  Google Scholar 

  12. Pierrefixe SCAH, Stralen SJMv, Stralen JNPv, Guerra CF, Bickelhaupt FM (2009) Angew Chem Int Ed 121:6501–6593

    Google Scholar 

  13. Kutzelnigg W (1984) Angew Chem 96:262–286

    CAS  Google Scholar 

  14. Rundle RE (1947) J Am Chem Soc 69:1327–1331

    CAS  Google Scholar 

  15. Chuit C, Corriu RJP (1998) Chemistry of hypervalent compounds, Chapter 4

    Google Scholar 

  16. Kocher N, Henn J, Gostevskii B, Kost D, Kalikhman I, Engels B, Stalke D (2004) J Am Chem Soc 136:5563–5568

    Google Scholar 

  17. Pauling L (1939) The nature of the chemical bond. Cornell University Press, Ithaka

    Google Scholar 

  18. Gibbs GV, Downs JW, Boisen MB Jr (1994) Rev Mineral 29:331–368

    CAS  Google Scholar 

  19. Wang J, Eriksson LA, Boyd RJ, Shi Z, Johnson BG (1994) J Phys Chem 98:1844–1850

    CAS  Google Scholar 

  20. Herster JR, Malsen EN (1995) Acta Crystallogr Sect B 51:913–920

    Google Scholar 

  21. Bombicz P, Kovács I, Nyulászi L, Szieberth D, Terleczky P (2010) Organometallics 29:1100–1106

    CAS  Google Scholar 

  22. Sidorkin VF, Doronina EP (2009) Organometallics 28:5305

    CAS  Google Scholar 

  23. Fester GW, Wagler J, Brendler E, Böhme U, Gerlach D, Gerlach D (2009) J Am Chem Soc 131:6855

    CAS  Google Scholar 

  24. Mahalakshmi L, Stalke D (2002) Struct Bonding 103:85

    CAS  Google Scholar 

  25. Baier F, Fei Z, Gornitzka H, Murso A, Neufeld S, Pfeiffer M, Rüdenauer I, Steiner A, Stey T, Stalke D (2002) J Organomet Chem 661:111

    CAS  Google Scholar 

  26. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    CAS  Google Scholar 

  27. Stey T, Henn J, Stalke D (2007) Chem Commun 413–415

    Google Scholar 

  28. Stey T, Pfeiffer M, Henn J, Pandey SK, Stalke D (2007) Chem Eur J 13:3636–3642

    CAS  Google Scholar 

  29. Steiner A, Stalke D (1993) J Chem Soc, Chem Commun 444–446

    Google Scholar 

  30. Becker G, Beck HP (1977) Z Anorg Allg Chem 430:77

    CAS  Google Scholar 

  31. Becker G, Niemeyer M, Mundt O, Schwarz W, Westerhausen M, Ossberger W, Mayer P, Nöth H, Zhong Z, Dijkstrac P et al (2004) Z Anorg Allg Chem 630:2605

    CAS  Google Scholar 

  32. Steiner A, Stalke D (1993) J Chem Soc, Chem Commun 444

    Google Scholar 

  33. Steiner A, Stalke D (1995) Organometallics 14:2422

    CAS  Google Scholar 

  34. Henn J, Meindl K, Oechsner A, Schwab G, Koritsanszky T, Stalke D (2010) Angew Chem 122:2472

    Google Scholar 

  35. Johnson AW (1993) Ylides and imines of phosphorus. Wiley, New York

    Google Scholar 

  36. Gleria M, Jaeger Rd (2004) Phosphazenes – a worldwide insight. Nova Publishers, New York

    Google Scholar 

  37. Dehnicke K, Weller F (1997) Coord Chem Rev 158:103–169

    CAS  Google Scholar 

  38. Gilheany DG (1994) Chem Rev 94:1339–1374

    CAS  Google Scholar 

  39. Steiner A, Zacchini S, Richards PI (2002) Coord Chem Rev 227:193

    CAS  Google Scholar 

  40. Bickley JF, Copsey MC, Jeffery JC, Leedham AP, Russell CA, Stalke D, Steiner A, Stey T, Zacchini S (2004) J Chem Soc, Dalton Trans 989

    Google Scholar 

  41. Reed AE, Schleyer PvR (1990) J Am Chem Soc 112:1434–1445

    CAS  Google Scholar 

  42. Magnusson EJ (1993) J Am Chem Soc 115:1051–1061

    CAS  Google Scholar 

  43. Chesnut DB (2003) J Phys Chem A 107:4307–4313

    CAS  Google Scholar 

  44. Naito T, Nagase S, Yamataka H (1994) J Am Chem Soc 116:10080–10088

    CAS  Google Scholar 

  45. Restrepo-Cossio AA, Gonzalez CA, Mari F (1998) J Phys Chem A 102:6993–7000

    CAS  Google Scholar 

  46. Yamataka H, Nagese S (1998) J Am Chem Soc 120:7530–7536

    CAS  Google Scholar 

  47. Dobado JA, Martínez-Garzía H, Molina JM, Sundberg MR (1998) J Am Chem Soc 120:8461–8471

    CAS  Google Scholar 

  48. Lu CW, Liu CB, Sun CC (1999) J Phys Chem A 103:1078–1083

    CAS  Google Scholar 

  49. Lu CW, Sun CC, Zang QJ, Liu CB (1999) Chem Phys Lett 311:491–498

    CAS  Google Scholar 

  50. Koketsu J, Ninomiya Y, Suzuki Y, Koga N (1997) Inorg Chem 36:694–702

    CAS  Google Scholar 

  51. Kocher N, Leusser D, Murso A, Stalke D (2004) Chem Eur J 10:3622–3631

    CAS  Google Scholar 

  52. Wingerter S, Pfeiffer M, Baier F, Stey T, Stalke D (2000) Z Anorg Allg Chem 626:1121–1130

    CAS  Google Scholar 

  53. Wingerter S, Pfeiffer M, Murso A, Lustig C, Stey T, Chandrasekhar V, Stalke D (2001) J Am Chem Soc 123:1381–1388

    CAS  Google Scholar 

  54. Yufit DS, Howard JAK, Davidson MG (2000) J Chem Soc, Perkin Trans 2 2:249–253

    Google Scholar 

  55. Takeda T (2004) Modern carbonyl chemistry – methods and applications. Wiley-VCH, Weinheim

    Google Scholar 

  56. Aggarwal VK, Richardson J (2003) Chem Commun 21:2644–2651

    Google Scholar 

  57. Aggarwal VK, Winn CL (2004) Acc Chem Res 37:611–620

    CAS  Google Scholar 

  58. Brandt S, Helquist P (1979) J Am Chem Soc 101:6473–6475

    CAS  Google Scholar 

  59. Kremer KAM, Helquist P, Kerber RC (1981) J Am Chem Soc 103:1862–1864

    CAS  Google Scholar 

  60. O'Connor EJ, Helquist P (1982) J Am Chem Soc 104:1869–1874

    Google Scholar 

  61. Weber L (1983) Angew Chem 95:539–551

    CAS  Google Scholar 

  62. Aggarwal VK (1998) Synlett 4:329–336

    Google Scholar 

  63. Tewari RS, Awasthi AK, Awasthi A (1983) Synthesis 4:330–331

    Google Scholar 

  64. Franzen V, Driesen H-E (1963) Chem Ber 96:1881–1890

    CAS  Google Scholar 

  65. Stey T, Stalke D (2004) Lead structures in lithium organic chemistry. In: Rappoport Z, Marek I (eds) The Chemistry of Organolithium Compounds. New York: JohnWiley & Sons, pp. 47–120

    Google Scholar 

  66. Beswick MA, Wright DS (1998) Coord Chem Rev 176:373–406

    CAS  Google Scholar 

  67. Fleischer R, Stalke D (1998) Coord Chem Rev 176:431–450

    CAS  Google Scholar 

  68. Stalke D (2000) Proc Indian Acad Sci 112:155–170

    CAS  Google Scholar 

  69. Brask JK, Chivers T (2001) Angew Chem 113:4082–4098

    Google Scholar 

  70. Aspinall GM, Copsey MC, Leedham AP, Russell CR (2002) Coord Chem Rev 227:217–232

    CAS  Google Scholar 

  71. Walfort B, Leedham AP, Russell CR, Stalke D (2001) Inorg Chem 40:5668–5674

    CAS  Google Scholar 

  72. Walfort B, Stalke D (2001) Angew Chem 113:3965–3969

    Google Scholar 

  73. Walfort B, Bertermann R, Stalke D (2001) Chem Eur J 7:1424–1430

    CAS  Google Scholar 

  74. Deuerlein S (2007) Synthesis and electron density determination of novel polyimido sulfur ylides. Göttingen, Germany

    Google Scholar 

  75. Deuerlein S, Leusser D, Flierler U, Ott H, Stalke D (2008) Organometallics 27:2306–2315

    CAS  Google Scholar 

  76. Herberhold M, Köhler C, Wrackmeyer B (1992) Phosphorus, Sulfur, Silicon Relat Elem 68:219–222

    CAS  Google Scholar 

  77. Pohl S, Krebs B, Seyer U, Henkel G (1979) Chem Ber 112:1751–1755

    CAS  Google Scholar 

  78. Mayer I (1987) THEOCHEM 149:81–89

    Google Scholar 

  79. Bors DA, Streitwieser A (1986) J Am Chem Soc 108:1397–1404

    CAS  Google Scholar 

  80. Salzner U, Schleyer PvR (1993) J Am Chem Soc 115:10231–10236

    CAS  Google Scholar 

  81. Stefan T, Janoschek R (2000) J Mol Modeling 6:282–288

    CAS  Google Scholar 

  82. Cruickshank DWJ, Eisenstein M (1985) J Mol Struct 130:282–288

    Google Scholar 

  83. Cruickshank DWJ (1985) J Mol Struct 130:177–191

    CAS  Google Scholar 

  84. Rundle RE (1949) J Chem Phys 17:671–675

    CAS  Google Scholar 

  85. Rundle RE (1957) J Phys Chem 61:45–50

    CAS  Google Scholar 

  86. Steudel R (2008) Chemie der Nichtmetalle - Von Struktur und Bindung zur Anwendung, Berlin: de Gruyter

    Google Scholar 

  87. Fleischer R, Freitag S, Pauer F, Stalke D (1996) Angew Chem 108:208–211

    Google Scholar 

  88. Fleischer R, Rothenberger A, Stalke D (1997) Angew Chem 109:1141–1143

    Google Scholar 

  89. Fleischer R, Freitag S, Stalke D (1998) J Chem Soc, Dalton Trans 193–197

    Google Scholar 

  90. Fleischer R, Stalke D (1998) Chem Commun 343–345

    Google Scholar 

  91. Fleischer R, Stalke D (1998) J Organomet Chem 550:173–182

    CAS  Google Scholar 

  92. Fleischer R, Stalke D (1998) Organometallics 17:832–838

    CAS  Google Scholar 

  93. Ilge D, Wright DS, Stalke D (1998) Chem Eur J 4:2275–2279

    CAS  Google Scholar 

  94. Walfort B, Pandey SK, Stalke D (2001) Chem Commun 1640–1641

    Google Scholar 

  95. Fleischer R, Walfort B, Gbureck A, Scholz P, Kiefer W, Stalke D (1998) Chem Eur J 4:2266–2279

    CAS  Google Scholar 

  96. Glemser O, Pohl S, Tesky F-M, Mews R (1977) Angew Chem 89:829–830

    CAS  Google Scholar 

  97. Meij R, Oskam A, Stufkens DJ (1979) J Mol Struct 51:37–49

    CAS  Google Scholar 

  98. Herbrechtsmeier A, Schnepfel FM, Glemser O (1978) J Mol Struct 50:43–63

    CAS  Google Scholar 

  99. Markowskii LN, Tovestenko VI, Pashinnik VE, Mel'nichuk EA, Makarenko AG, Shermolovich YG (1991) Zh Org Khim 27:769–737

    Google Scholar 

  100. Leusser D, Henn J, Kocher N, Engels B, Stalke D (2004) J Am Chem Soc 126:1781–1793

    CAS  Google Scholar 

  101. Henn J, Ilge D, Leusser D, Stalke D, Engels B (2004) J Phys Chem A108:9442–9452

    Google Scholar 

  102. Braunschweig H, Kollann C, Rais D (2006) Angew Chem Int Ed 45:5254–5274

    Google Scholar 

  103. Braunschweig H, Kollann C, Seeler F (2008) Struct Bond 130:1–27

    CAS  Google Scholar 

  104. Braunschweig H, Kollann C, Englert U (1998) Angew Chem 110:3355

    Google Scholar 

  105. Braunschweig H, Colling M (2001) Coord Chem Rev 223:1–51

    CAS  Google Scholar 

  106. Braunschweig H, Kollann C, Rais D (2006) Angew Chem 118:5380–5400

    Google Scholar 

  107. Braunschweig H, Burschka C, Burzler M, Metz S, Radacki K (2006) Angew Chem 118:4458–4461

    Google Scholar 

  108. Braunschweig H (1998) Angew Chem 110:1882–1898

    Google Scholar 

  109. Braunschweig H, Colling M, Hu C (2003) Inorg Chem 42:941–943

    CAS  Google Scholar 

  110. Aldridge S, Coombs DL (2004) Coord Chem Rev 248:535–559

    CAS  Google Scholar 

  111. Braunschweig H (2004) Adv Organomet Chem 51:163–192

    CAS  Google Scholar 

  112. Ehlers AW, Baerends EJ, Bickelhaupt FM, Radius U (1998) Chem Eur J 4:210–221

    CAS  Google Scholar 

  113. Boehme C, Uddin J, Frenking G (2000) Coord Chem Rev 197:249–276

    CAS  Google Scholar 

  114. Blank B, Colling-Hendelkens M, Kollann C, Radacki K, Rais D, Uttinger K, Whittell GR, Braunschweig H (2007) Chem Eur J 13:4770–4781

    CAS  Google Scholar 

  115. Flierler U, Burzler M, Leusser D, Henn J, Ott H, Braunschweig H, Stalke D (2008) Angew Chem 120:4393–4397

    Google Scholar 

  116. Götz K, Kaupp M, Braunschweig H, Stalke D (2009) Chem Eur J 15:623–632

    Google Scholar 

  117. Farrugia LJ, Mallinson PR, Stewart B (2003) Acta Crystallogr B59:234–247

    CAS  Google Scholar 

  118. Leung PC, Coppens P (1983) Acta Crystallogr B39:535–542

    CAS  Google Scholar 

  119. Macchi P, Garlaschelli L, Martinengo S, Sironi A (1999) J Am Chem Soc 121:10428–10429

    CAS  Google Scholar 

  120. Farrugia LJ, Evans C, Tegel M (2006) J Phys Chem A 110:7952–7961

    CAS  Google Scholar 

  121. Haaland A, Shorokhov DJ, Tverdova NV (2003) Chem Eur J 10:4416–4421

    Google Scholar 

  122. Macchi P, Garlaschelli L, Sironi A (2002) J Am Chem Soc 124:14173–14184

    CAS  Google Scholar 

  123. Henn J, Leusser D, Stalke D (2007) J Comput Chem 28:2317–2324

    CAS  Google Scholar 

  124. Bochmann M (1992) Angew Chem 104:1206–1207

    CAS  Google Scholar 

  125. Piers WE, Chivers T (1997) Chem Soc Rev 26:345–354

    CAS  Google Scholar 

  126. Piers WE (1998) Chem Eur J 4:13–18

    CAS  Google Scholar 

  127. Stephan DW, Erker G (2010) Angew Chem 122:50–81

    Google Scholar 

  128. Kehr G, Fröhlich R, Wibbeling B, Erker G (2000) Chem Eur J 6:258–266

    CAS  Google Scholar 

  129. Flierler U, Leusser D, Ott H, Kehr G, Erker G, Grimme S, Stalke D (2009) Chem Eur J 15:4595–4601

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft within the priority program 1178 Experimental charge density as the key to understand chemical interactions; the DNRF funded Center for Materials Crystallography; and the PhD program CaSuS, Catalysis for Sustainable Synthesis, funded from the Land Niedersachsen, Chemetall, Frankfurt, and the Volkswagenstiftung. The authors are particularly indebted to many capable students providing the basic results brought about by this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Stalke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flierler, U., Stalke, D. (2012). Some Main Group Chemical Perceptions in the Light of Experimental Charge Density Investigations. In: Stalke, D. (eds) Electron Density and Chemical Bonding I. Structure and Bonding, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_71

Download citation

Publish with us

Policies and ethics