Skip to main content

Structure and Acidity in Aqueous Solutions and Oxide–Water Interfaces

  • Chapter
  • First Online:
Bond Valences

Part of the book series: Structure and Bonding ((STRUCTURE,volume 158))

Abstract

There have been a number of attempts to relate structural descriptors based on the bond-valence theory to the Brønsted acidity of (hydr)oxyacid monomers and oxide surface functional groups, via simple quantitative structure– activity relationships (QSARs). These models show some promise, but since they have been calibrated solely on monomers, it is difficult to know whether oxide surface functional groups are within their domain of applicability. In fact, there are strong reasons, including direct ab initio computation of equilibrium constants for surface functional groups, for doubting whether acidity QSARs based on the bond-valence theory are yet capable of accurately predicting acidity at the level of individual surface functional groups, despite some apparent successes. For progress to continue, we must further develop the relationship between bond valence and structural energy, so that we will be better able to construct widely applicable models

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BVT:

Bond-valence theory

G :

Global instability index

MUSIC:

Multisite complexation

QSAR:

Quantitative structure–activity relationship

SBE:

Solvation, bond strength, and electrostatic model

SCM:

Surface complexation model

References

  1. Brown ID (2002) The chemical bond in inorganic chemistry: the bond valence model. Oxford University Press, New York

    Google Scholar 

  2. Salinas-Sanchez A, Garcia-Muñoz JL, Rodriguez-Carvajal J, Saez-Puche R, Martinez JL (1992) Structural characterization of R2BaCuO5 (R = Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Eu and Sm) oxides by X-ray and neutron diffraction. J Solid State Chem 100:201–211

    Article  CAS  Google Scholar 

  3. Perez-Mato JM, Withers RL, Larsson A-K, Orobengoa D, Liu Y (2009) Distortion modes and related ferroic properties of the stuffed tridymite-type compounds SrAl2O4 and BaAl2O4. Phys Rev B79:064111

    Article  Google Scholar 

  4. Cooper VR, Grinberg I, Rappe AM (2003) Extending first principles modeling with crystal chemistry: a bond-valence based classical potential. In: Davies PK, Singh DJ (eds) Fundamental physics of ferroelectrics. American Institute of Physics, Melville, New York

    Google Scholar 

  5. Shin Y-H, Cooper VR, Grinberg I, Rappe AM (2005) Development of a bond-valence molecular-dynamics model for complex oxides. Phys Rev B 71:054104

    Article  Google Scholar 

  6. Adams S (2001) Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Crystallogr B 57:278–287

    Article  CAS  Google Scholar 

  7. Adams S, Moretzki O, Canadell E (2004) Global instability index optimizations for the localization of mobile protons. Solid State Ionics 168:281–290

    Article  CAS  Google Scholar 

  8. Adams S, Rao RP (2009) Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. Phys Chem Chem Phys 11:3210–3216

    Article  CAS  Google Scholar 

  9. Adams S, Swenson J (2002) Bond valence analysis of transport pathways in RMC models of fast ion conducting glasses. Phys Chem Chem Phys 4:3179–3184

    Article  CAS  Google Scholar 

  10. Hinchliffe A (2003) Molecular modelling for beginners. Wiley, Chichester

    Google Scholar 

  11. Rappé AK, Casewit CJ (1997) Molecular mechanics across chemistry. University Science Books, Sausalito

    Google Scholar 

  12. Brown ID (1981) The bond-valence method: an empirical approach to chemical structure and bonding. In: O’Keefe M, Navrotsky A (eds) Structure and bonding in crystals. Academic, New York

    Google Scholar 

  13. Bickmore BR, Tadanier CJ, Rosso KM, Monn WD, Eggett DL (2004) Bond-valence methods for pK a prediction: critical reanalysis and a new approach. Geochim Cosmochim Acta 68:2025–2042

    Article  CAS  Google Scholar 

  14. Hiemstra T, Venema P, Van Riemsdijk WH (1996) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle. J Colloid Interface Sci 184:680–692

    Article  CAS  Google Scholar 

  15. Bickmore BR, Rosso KM, Mitchell SC (2006) Is there hope for multisite complexation modeling? In: Lützenkirchen J (ed) Surface complexation modelling. Elsevier, Amsterdam

    Google Scholar 

  16. Bickmore BR, Rosso KM, Tadanier CJ, Bylaska EJ, Doud D (2006) Bond-valence methods for pK a prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects. Geochim Cosmochim Acta 70:4057–4071

    Article  CAS  Google Scholar 

  17. Bickmore BR, Rosso KM, Brown ID, Kerisit S (2009) Bond-valence constraints on liquid water structure. J Phys Chem A 113:1847–1857

    Article  CAS  Google Scholar 

  18. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  19. Catalano JG, Fenter P, Park C (2007) Interfacial water structure on the (012) surface of hematite: ordering and reactivity in comparison with corundum. Geochim Cosmochim Acta 71:5313–5324

    Article  CAS  Google Scholar 

  20. Sung J, Shen YR, Waychunas GA (2012) The interfacial structure of water/protonated α-Al2O3 (11–20) as a function of pH. J Phys Condens Matter 24:124101

    Article  CAS  Google Scholar 

  21. Kosmulski M (2001) Chemical properties of material surfaces. Marcel Dekker, Basel

    Book  Google Scholar 

  22. Westall JC, Hohl H (1980) A comparison of electrostatic models for the oxide/solution interface. Adv Colloid Interface Sci 12:265–294

    Article  CAS  Google Scholar 

  23. Machesky ML, Predota M, Wesolowski DJ, Vlcek L, Cummings PT, Rosenqvist J, Ridley MK, Kubicki JD, Bandura AV, Kumar N, Sofo JO (2008) Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework. Langmuir 24:12331–12339

    Article  CAS  Google Scholar 

  24. Vlcek L, Zhang Z, Machesky ML, Fenter P, Rosenqvist J, Wesolowski DJ, Anovitz L, Predota M, Cummings PT (2007) Electric double layer at metal oxide surfaces: static properties of the cassiterite-water interface. Langmuir 23:4925–4937

    Article  CAS  Google Scholar 

  25. Rosenqvist J, Machesky ML, Vlcek L, Cummings PT, Wesolowski DJ (2009) Charging properties of cassiterite (α-SnO2) surfaces in NaCl and RbCl ionic media. Langmuir 25:10852–10862

    Article  CAS  Google Scholar 

  26. Cheng J, Sprik M (2010) Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics. J Chem Theory Comput 6:880–889

    Article  CAS  Google Scholar 

  27. Sulpizi M, Sprik M (2010) Acidity constants from DFT-based molecular dynamics simulations. J Phys Condens Matter 22:284116

    Article  Google Scholar 

  28. Casey WH, Rustad JR (2007) Reaction dynamics, molecular clusters, and aqueous geochemistry. Annu Rev Earth Planet Sci 35:21–46

    Article  CAS  Google Scholar 

  29. Casey WH, Rustad JR, Banerjee D, Furrer G (2005) Large molecules as models for small particles in aqueous geochemistry research. J Nanopart Res 7:377–387

    Article  CAS  Google Scholar 

  30. Casey WH, Rustad JR, Spiccia L (2009) Minerals as molecules – use of aqueous oxide and hydroxide clusters to understand geochemical reactions. Chem Eur J 15:4496–4515

    Article  CAS  Google Scholar 

  31. Casey WH, Swaddle TW (2003) Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry. Rev Geophys. doi:10.1029/2002RG000118

  32. Rustad JR (2005) Molecular dynamics simulation of the titration of polyoxocations in aqueous solution. Geochim Cosmochim Acta 69:4397–4410

    Article  CAS  Google Scholar 

  33. Sahai N, Sverjensky DA (1997) Sovation and electrostatic model for specific electrolyte adsorption. Geochim Cosmochim Acta 61:2827–2848

    Article  CAS  Google Scholar 

  34. Sahai N, Sverjensky DA (1997) Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data. Geochim Cosmochim Acta 61:2801–2826

    Article  CAS  Google Scholar 

  35. Sverjensky DA (1994) Zero-point-of-charge prediction from crystal chemistry and solvation theory. Geochim Cosmochim Acta 58:3123–3129

    Article  CAS  Google Scholar 

  36. Sverjensky DA (2005) Prediction of surface charge on oxides in salt solutions: revisions for 1:1 (M+L-) electrolytes. Geochim Cosmochim Acta 69:225–257

    Article  CAS  Google Scholar 

  37. Sverjensky DA, Sahai N (1996) Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water. Geochim Cosmochim Acta 60:3773–3797

    Article  CAS  Google Scholar 

  38. Bickmore BR, Wander MCF, Edwards J, Maurer J, Shepherd K, Meyer E, Johansen WJ, Frank RA, Andros C, Davis M (2012) Electronic structure effects in the vectorial bond-valence model. Am Miner (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry R. Bickmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bickmore, B.R. (2013). Structure and Acidity in Aqueous Solutions and Oxide–Water Interfaces. In: Brown, I., Poeppelmeier, K. (eds) Bond Valences. Structure and Bonding, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2012_84

Download citation

Publish with us

Policies and ethics