Skip to main content

Interfacial Structures and Bonding in Metal-Coated Gold Nanorods

  • Chapter
  • First Online:
Gold Clusters, Colloids and Nanoparticles II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 162))

Abstract

We present a topical review of research in the field of metal-coated gold nanorods. By combining synthetic design strategies with state-of-the art characterisation techniques (particularly aberration-corrected scanning transmission electron microscopy) and molecular dynamic simulations, we demonstrate the potential to gain a fundamental understanding of, and control over, the atomic detail of metal–metal bonding at the interfaces of core–shell nanorods and nanoparticles. This analysis is facilitated by making comparisons between the related bimetallic systems: AuRh, AuPd and AuPt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alloyeau D, Mottet C, Ricolleau C (eds) (2012) Nanoalloys – synthesis, structure and properties. Springer, London

    Google Scholar 

  2. Calvo F (ed) (2013) Nanoalloys – from fundamentals to emergent applications. Elsevier, Amsterdam

    Google Scholar 

  3. Johnston RL, Wilcoxon J (eds) (2012) Metal nanoparticles and nanoalloys. Elsevier, Amsterdam

    Google Scholar 

  4. Mariscal M, Oviedo O, Leiva E (2013) Metal clusters and nanoalloys. Springer, New York

    Book  Google Scholar 

  5. Cui C, Gan L, Heggen M, Rudi S, Strasser P (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12:765–771

    Article  CAS  Google Scholar 

  6. Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ, Abruña HD (2012) Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12:81–87

    Article  Google Scholar 

  7. Ferrando R, Jellinek J, Johnston RL (2008) From theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  8. Parsina I, Baletto F (2010) Tailoring the structural motif of AgCo nanoalloys: core/shell versus Janus-like. Phys Chem C 114:1504–1511

    Article  CAS  Google Scholar 

  9. Langlois C, Li ZY, Yuan J, Alloyeau D, Nelayah J, Bochicchio D, Ferrando R, Ricolleau C (2012) Transition from core-shell to Janus chemical configuration for bimetallic nanoparticles. Nanoscale 4:3381–3388

    Article  CAS  Google Scholar 

  10. Chen H, Shao L, Li Q, Wang J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42:2679

    Article  CAS  Google Scholar 

  11. Hou S, Hu X, Wen T, Liu X, Wu W (2013) Core-shell noble metal nanostructures template by gold nanorods. Adv Mater 25:3857

    Article  CAS  Google Scholar 

  12. Kwon G, Ferguson GA, Heard CG, Tyo EC, Yin C, DeBartolo J, Seifert S, Winans RE, Kropf AJ, Greeley J, Johnston RL, Curtiss LA, Pellin MJ, Vajda S (2013) Size-dependent subnanometer Pd cluster (Pd4, Pd6 and Pd17) water oxidation electrocatalysis. ACS Nano 7:5808–5817

    Article  CAS  Google Scholar 

  13. Li ZY, Young NP, Di Vece M, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451:46–48

    Article  CAS  Google Scholar 

  14. Nesselberger M, Roefzaad M, Fayçal Hamou R, Biedermann PU, Schweinberger FF, Kunz S, Schloegl K, Wiberg GKH, Ashton S, Heiz U, Mayrhofer KJH, Arenz M (2013) The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat Mater 12:919–924

    Article  CAS  Google Scholar 

  15. Belic D, Chantry RL, Li ZY, Brown SA (2011) Ag-Au nanoclusters: structure and phase segregation. Appl Phys Lett 99:17194

    Article  Google Scholar 

  16. Yin F, Wang ZW, Palmer RE (2011) Controlled formation of mass-selected Cu-Au core-shell cluster beams. J Am Chem Soc 133:10325–10327

    Article  CAS  Google Scholar 

  17. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties, and applications toward biology, catalysis and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  18. Lisieck I (2005) Size, shape, and structural control of metallic nanocrystals. J Phys Chem B 109:12231–12244

    Article  Google Scholar 

  19. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterisation and applications. Coord Chem Rev 249:1870–1901

    Article  Google Scholar 

  20. Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Nova C, Mulvaney P, Liz-Marzán LM, García de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805

    Article  CAS  Google Scholar 

  21. Sharma V, Park K, Srinivasarao M (2009) Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mat Sci Eng R 65:1–38

    Article  Google Scholar 

  22. Erikson H, Sarapuu A, Alexeyeva N, Tammeveski K, Solla-Gullón J, Feliu JM (2012) Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta 59:329–335

    Article  CAS  Google Scholar 

  23. Vidal-Iglesias FJ, Aran-Ais RM, Solla-Gullon J, Herrero E, Feliu JM (2012) Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes. ACS Catal 2:901–910

    Article  CAS  Google Scholar 

  24. Hernandez J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2007) Electrochemistry of shape-controlled catalysts: oxygen reduction reaction on cubic gold nanoparticles. J Phys Chem C 38:14078–14083

    Article  Google Scholar 

  25. Langille MR, Personick ML, Zhang J, Mirkin CA (2012) Defining rules for the shape evolution of gold nanoparticles. J Am Chem Soc 134:14542–14544

    Article  CAS  Google Scholar 

  26. Personick ML, Langille MR, Wu JS, Mirkin CA (2013) Synthesis of gold hexagonal bipyramids directed by planar-twinned silver triangular nanoprisms. J Am Chem Soc 135:3800–3803

    Article  CAS  Google Scholar 

  27. Burt JL, Elechiguerra JL, Reyes-Gasga J, Montejano-Carrizales JM, Yacaman MJ (2005) Beyond Archimedean solids: star polyhedral gold nanocrystals. J Cryst Growth 285:681–691

    Article  CAS  Google Scholar 

  28. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  29. Lohse SE, Murphy CJ (2013) The quest for shape control: a history of gold nanorod synthesis. Chem Mater 25:1250–1261

    Article  CAS  Google Scholar 

  30. Goia DV, Matijevic E (1998) Preparation of monodispersed metal particles. New J Chem 22:1203–1215

    Article  CAS  Google Scholar 

  31. Tao F, Grass ME, Butcher DR, Zhang Y, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322:932–934

    Article  CAS  Google Scholar 

  32. Hoffmannova H, Okube M, Petrykin V, Krtil P, Mueller JE, Jacob T (2013) Surface stability of Pt3Ni nanoparticulate alloy catalysts in hydrogen adsorption. Langmuir 29:9046–9050

    Article  CAS  Google Scholar 

  33. Seifert W, Carlsson N, Miller M, Pistol ME, Samuelson L, Wallenberg LR (1996) In-situ growth of quantum dot structures by the Stranski-Krastanov growth mode. Prog Cryst Growth Ch 33:423–471

    Article  CAS  Google Scholar 

  34. Gong J (2012) Structure and surface chemistry of gold based metal catalysts. Chem Rev 112:2987–3054

    Article  CAS  Google Scholar 

  35. Ding Y, Fan F, Tian Z, Wang ZL (2010) Atomic structure of Au-Pd bimetallic alloyed nanoparticles. J Am Chem Soc 132:12480–12486

    Article  CAS  Google Scholar 

  36. Kittel C (2008) Introduction to solid state physics. Wiley, New Jersey

    Google Scholar 

  37. Okamoto H, Massalski TB (1985) The Au-Pd (gold-palladium) system. J Phase Equlib 6:229–235

    CAS  Google Scholar 

  38. Akita T, Hiroki T, Tanaka S, Kojima T, Kohyama M, Iwase A, Hori F (2008) Analytical TEM observation of Au-Pd nanoparticles prepared by sonochemical method. Catal Today 131:90–97

    Article  CAS  Google Scholar 

  39. Dash P, Bond T, Fowler C, Hou W, Coombs N, Scott RWJ (2009) Rational design of supported PdAu nanoparticle catalysts from structured nanoparticle precursors. J Phys Chem C 113:12719–12730

    Article  CAS  Google Scholar 

  40. Ferrer D, Torres-Castro A, Gao X, Sepulveda-Guzman S, Ortiz-Mendes U, Jose-Yacaman M (2007) Three-layer core/shell structure in Au-Pd bimetallic nanoparticles. Nano Lett 7:1701–1705

    Article  CAS  Google Scholar 

  41. Hu JW, Li JF, Ren B, Wu DY, Sun SG, Tian ZQ (2007) Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate. J Phys Chem C 111:1105–1112

    Article  CAS  Google Scholar 

  42. Lee AF, Baddeley CJ, Hardacre C, Ormerod RM, Lambert RM (1995) Structural and catalytic properties of novel Au/Pd bimetallic colloid particles: EXAFS, XRD, and acetylene coupling. J Phys Chem 99:6096–6102

    Article  CAS  Google Scholar 

  43. Campbell CT (1990) Bimetallic surface chemistry. Annu Rev Phys Chem 41:775–837

    Article  CAS  Google Scholar 

  44. Yang J, Yang J, Ying JY (2012) Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction. ACS Nano 6:9373–9382

    Article  CAS  Google Scholar 

  45. Gan L, Heggen M, Rudi S, Strasser P (2012) Core-shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett 12:5423–5430

    Article  CAS  Google Scholar 

  46. Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11:919–926

    Article  CAS  Google Scholar 

  47. Brydson R (ed) (2011) Aberration-corrected analytical transmission electron microscopy. Wiley, Chichester

    Google Scholar 

  48. Li ZY (2012) Scanning transmission electron microscopy studies on mono- and bimetallic nanoclusters. In: Johnston RL, Wilcoxon J (eds) Metal nanoparticles and nanoalloys. Elsevier, Amsterdam

    Google Scholar 

  49. Chantry RL (2013) Characterising the structure and properties of bimetallic nanoparticles. Ph.D. Thesis, University of Birmingham, UK

    Google Scholar 

  50. Williams DB, Carter CB (2009) Transmission electron microscopy. Springer, New York

    Book  Google Scholar 

  51. Chantry RL, Siriwatcharapiboon W, Horswell SL, Khanal BP, Zubarev ER, Atanasov I, Johnston RL, Li ZY (2013) An atomistic view of the interfacial structures of Au-Core Rh and Pd-Shell nanorods. Nanoscale 5:7452–7457

    Article  CAS  Google Scholar 

  52. Goris B, De Backer A, Van Aert S, Gómez-Graña S, Liz-Marzán LM, Van Tendeloo G, Bals S (2013) Three-dimensional elemental mapping at the atomic scale in bimetallic nanocrystals. Nano Lett 13:4236–4241

    Article  CAS  Google Scholar 

  53. Herzing AA, Watanabe M, Edwards JK, Conte M, Tang ZR, Hutchings GJ, Kiely CJ (2008) Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscopy. Faraday Discuss 138:337–351

    Article  CAS  Google Scholar 

  54. Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope, 3rd edn. Springer, New York

    Book  Google Scholar 

  55. Lin YC, Sundholm D, Juselius J, Cui LF, Li X, Zhai HJ, Wang LS (2006) Experimental and computational studies of alkali-metal coinage-metal clusters. J Phys Chem A 110:4244–4250

    Article  CAS  Google Scholar 

  56. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  57. Kohn W, Sham LJ (1965) Self-consistent equation including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  58. Bochicchio D, Ferrando R (2010) Size-dependent transition to high-symmetry chiral structures in AgCu, AgCo, AgNi, and AuNi nanoalloys. Nano Lett 10:4211–4216

    Article  CAS  Google Scholar 

  59. Ferrando R, Fortunelli A, Johnston RL (2008) Searching for the optimum structures of alloy nanoclusters. Phys Chem Chem Phys 10:640–649

    Article  CAS  Google Scholar 

  60. Heiles S, Johnston RL (2013) Global optimization of clusters using electronic structure methods. Int J Quantum Chem 113:2091–2109

    Article  CAS  Google Scholar 

  61. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic thermodynamics and kinetic effects. Rev Mod Phys 77:371–423

    Article  CAS  Google Scholar 

  62. Ducastelle F, Cyrot-Lackmann F (1970) Moments developments and their application to the electronic charge distribution of d bands. J Phys Chem Solids 31:1295–1306

    Article  CAS  Google Scholar 

  63. Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22–33

    Article  CAS  Google Scholar 

  64. Rosato V, Guillope M, Legrand B (1989) Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model. Philos Mag A 59:321–336

    Article  Google Scholar 

  65. Baletto F, Mottet C, Ferrando R (2003) Growth of three-shell onion-like bimetallic nanoparticles. Phys Rev Lett 90:135504

    Article  CAS  Google Scholar 

  66. Bochicchio D, Ferrando R (2013) Morphological instability of core-shell metallic nanoparticles. Phys Rev B 87:165435

    Article  Google Scholar 

  67. Kuntová Z, Rossi G, Ferrando R (2008) Melting of core-shell Ag-Ni and Ag-Co nanoclusters studied via molecular dynamics simulations. Phys Rev B 77:205431–205438

    Article  Google Scholar 

  68. Logsdail AJ, Johnston RL (2012) Interdependence of structure and chemical order in high symmetry (PdAu)N nanoclusters. RSC Adv 2:5863–5869

    Article  CAS  Google Scholar 

  69. Gupta RP (1981) Lattice relaxation at a metal surface. Phys Rev B 23:6265–6270

    Article  CAS  Google Scholar 

  70. Logsdail AJ, Paz-Borbón LO, Johnston RL (2009) Structures and stabilities of platinum-gold nanoclusters. J Comput Theor Nanosci 6:857–866

    Article  CAS  Google Scholar 

  71. Baletto F, Mottet C, Ferrando R (2002) Growth simulations of silver shells on copper and palladium nanoclusters. Phys Rev B 66:155420

    Article  Google Scholar 

  72. Tyson WR, Miller WA (1977) Surface free energies of solid metals-estimation from liquid surface-tension measurements. Surf Sci 62:267

    Article  CAS  Google Scholar 

  73. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  74. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  75. Ovari L, Bugyi L, Majzik Z, Berko A, Kiss J (2008) Surface structure and composition of Au-Rh bimetallic nanoclusters on TiO2(110): a LEIS and STM study. J Phys Chem C 112:18011–18016

    Article  CAS  Google Scholar 

  76. Óvári L, Berkó A, Baláza N, Majzik Z, Kiss J (2010) Formation of Rh-Au core-shell nanoparticles on TiO2(110) surface studies by STM and LEIS. Langmuir 26:2167–2175

    Article  Google Scholar 

  77. Okamoto H (1987) Phase diagrams of binary gold alloys. ASM International, Materials Park

    Google Scholar 

  78. Sneed BT, Kuo CH, Brodsky CN, Tsung CK (2012) Iodide-mediated control of rhodium epitaxial growth on well-defined noble metal nanocrystals: synthesis, characterization, and structure-dependent catalytic properties. J Am Chem Soc 134:18417–18426

    Article  CAS  Google Scholar 

  79. Essinger-Hileman ER, DeCicco D, Bondi JF, Schaak RE (2011) Aqueous room temperature synthesis of Au-Rh, Au-Pt, Pt-Rh, and Pd-Rh alloy nanoparticles: fully tunable composition within the miscibility gaps. J Mater Chem 21:11599–11604

    Article  CAS  Google Scholar 

  80. Chantry RL, Siriwatcharapiboon W, Horswell SL, Logsdail AJ, Johnston RL, Li ZY (2012) Overgrowth of rhodium on gold nanorods. J Phys Chem C 116:10312–10317

    Article  CAS  Google Scholar 

  81. Ferrer D, Blom DA, Allard LF, Mejia S, Perez-Tijerina E, Jose-Yacaman M (2008) Atomic structure of three-layer Au/Pd nanoparticles revealed by aberration corrected scanning transmission microscopy. J Mater Chem 18:2442–2446

    Article  CAS  Google Scholar 

  82. Fennell J, He DS, Tanyi AM, Logsdail AJ, Johnston RL, Li ZY, Horswell SL (2013) A selective blocking method to control the overgrowth of Pt on Au nanorods. J Am Chem Soc 135:6554–6561

    Article  CAS  Google Scholar 

  83. He DS, Han Y, Fennell J, Horswell SL, Li ZY (2012) Growth and stability of Pt on Au nanorods. Appl Phys Lett 101:113102

    Article  Google Scholar 

  84. Ismail R, Ferrando R, Johnston RL (2013) Theoretical study of the structures and chemical ordering of palladium-gold nanoalloys supported on MgO(100). J Phys Chem C 117:293–301

    Article  CAS  Google Scholar 

  85. Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys 116:3856–3863

    Article  CAS  Google Scholar 

  86. Pittaway F, Paz-Borbón LO, Johnston RL, Arslan H, Ferrando R, Mottet C, Barcaro G, Fortunelli A (2009) Theoretical studies of palladium−gold nanoclusters: Pd−Au clusters with up to 50 atoms. J Phys Chem C 113:9141–9152

    Article  CAS  Google Scholar 

  87. Hünenberger PH (2005) Thermostat algorithms for molecular dynamics simulations. In: Holm C, Kremer K (eds) Advanced computer simulation, Advances in polymer science. Springer, Berlin, pp 105–149

    Chapter  Google Scholar 

  88. Altman EI, Colton RJ (1994) Growth of Rh on Au(111): surface intermixing of immiscible metals. Surf Sci Lett 304:L400–L406

    Article  CAS  Google Scholar 

  89. Chado I, Scheurer F, Bucher JP (2001) Absence of ferromagnetic order in ultrathin Rh deposits grown under various conditions on Gold. Phys Rev B 64:094410

    Article  Google Scholar 

  90. Haftel MI, Rosen M, Franklin T, Hettermann M (1996) Molecular-dynamics investigation of early film growth of Pt/Au(100) and Au/Pt(100) and an interdiffusive growth mode. Phys Rev B 53:8007–8014

    Article  CAS  Google Scholar 

  91. Grzelczak M, Pérez-Juste J, Rodriguez-Gonzalez B, Liz-Marzán LM (2006) Influence of silver ions on the growth mode of platinum on gold nanorods. J Mater Chem 16:3946–3951

    Article  CAS  Google Scholar 

  92. Hernández-Fernández P, Rojas S, Ocón P, Gómez de la Fuente JL, San Fabión J, Sanza J, Peña MA, García-García FJ, Terreros P, Fierro JLG (2007) Influence of the preparation route of bimetallic Pt-Au nanoparticle electrocatalysts for the oxygen reduction reaction. J Phys Chem C 111:2193–2923

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from EPSRC grant numbers (EP/D056241/1, EP/G070326/1), COST Action MP0903, and the FP7 “ELCAT” grant no. 214936–2. R.L.C. thanks the EPSRC for a Ph.D. studentship and I.A. thanks the Marie Curie Actions (FP7/2007–2012). The authors thank R. Ferrando (University of Genoa, Italy) for the AuRh interatomic potentials and for helpful discussions, J.B.A. Davis (University of Birmingham, UK) for the calculated Au–M binding energies, and other co-workers mentioned in the references.

The STEM used in this research was obtained through Birmingham Science City with support from Advantage West Midlands and partially funded by the European Regional Development Fund. Calculations were performed on the University of Birmingham’s BlueBEAR high-performance computer (http://www.bear.bham.ac.uk).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Y. Li or Roy L. Johnston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chantry, R.L., Atanasov, I., Horswell, S.L., Li, Z.Y., Johnston, R.L. (2014). Interfacial Structures and Bonding in Metal-Coated Gold Nanorods. In: Mingos, D. (eds) Gold Clusters, Colloids and Nanoparticles II. Structure and Bonding, vol 162. Springer, Cham. https://doi.org/10.1007/430_2013_139

Download citation

Publish with us

Policies and ethics