Skip to main content

Single-Cell Expression Profiling and Proteomics of Primordial Germ Cells, Spermatogonial Stem Cells, Adult Germ Stem Cells, and Oocytes

  • Conference paper
  • First Online:
Stem Cells: Biology and Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((ICRRM,volume 1083))

Abstract

The mammalian germ cells, cell assemblies, tissues, and organs during development and maturation have been extensively studied at the tissue level. However, to investigate and understand the fundamental insights at the molecular basis of germ and stem cells, their cell fate plasticity, and determination, it is of most importance to analyze at the large scale on the single-cell level through different biological windows. Here, modern molecular techniques optimized for single-cell analysis, including single fluorescence-activated cell sorting (FACS) and single-cell RNA sequencing (scRNA-seq) or microfluidic high-throughput quantitative real-time polymerase chain reaction (qRT-PCR) for single-cell gene expression and liquid chromatography coupled to tandem mass spectrometry (LC-MSMS) for protein profiling, have been established and are still getting optimized.

This review aims on describing and discussing recent single-cell expression profiling and proteomics of different types of human germ cells, including primordial germ cells (PGCs), spermatogonial stem cells (SSCs), human adult germ stem cells (haGSCs), and oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

FACS:

Fluorescence-activated cell sorting

haGSC:

Human adult germ stem cell

hESC:

Human embryonic stem cells

hFib:

Human fibroblast

hPSC:

Human pluripotent stem cell

hSSC:

Human spermatogonial stem cell

LC-MSMS:

Liquid chromatography mass spectrometry

MACS:

Magnetic activated cell sorting

MSCs:

Mesenchymal stem cells

hPGC:

Human primordial germ cell

qRT-PCR:

Quantitative real-time polymerase chain reaction

scRNA-seq:

Single-cell RNA sequencing

hSSC:

Human spermatogonial stem cell

References

  • Chikhovskaya, J. V., Jonker, M. J., Meissner, A., Breit, T. M., Repping, S., & van Pelt, A. M. (2012). Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors. Human Reproduction, 27, 210–221.

    Article  CAS  PubMed  Google Scholar 

  • Choi, I., Carey, T. S., Wilson, C. A., & Knott, J. G. (2012). Transcription factor AP-2gamma is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis. Development, 139, 4623–4632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad, S., Azizi, H., Hatami, M., Kubista, M., Bonin, M., Hennenlotter, J., Sievert, K. D., & Skutella, T. (2016). Expression of genes related to germ cell lineage and Pluripotency in single cells and colonies of human adult germ stem cells. Stem Cells International, 2016, 8582526.

    Article  CAS  PubMed  Google Scholar 

  • Gerovska, D., & Arauzo-Bravo, M. J. (2016). Does mouse embryo primordial germ cell activation start before implantation as suggested by single-cell transcriptomics dynamics? Molecular Human Reproduction, 22, 208–225.

    Article  CAS  PubMed  Google Scholar 

  • Giritharan, G., Li, M. W., Di Sebastiano, F., Esteban, F. J., Horcajadas, J. A., Lloyd, K. C., Donjacour, A., Maltepe, E., & Rinaudo, P. F. (2010). Effect of ICSI on gene expression and development of mouse preimplantation embryos. Human Reproduction, 25, 3012–3024.

    Article  CAS  PubMed  Google Scholar 

  • Gkountela, S., Li, Z., Vincent, J. J., Zhang, K. X., Chen, A., Pellegrini, M., & Clark, A. T. (2013). The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation. Nature Cell Biology, 15, 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, R., Griparic, L., Vargas, V., Burgee, K., Santacruz, P., Anderson, R., Schiewe, M., Silva, F., & Patel, A. (2009). A putative mesenchymal stem cells population isolated from adult human testes. Biochemical and Biophysical Research Communications, 385, 570–575.

    Article  CAS  PubMed  Google Scholar 

  • Graf, T., & Enver, T. (2009). Forcing cells to change lineages. Nature, 462, 587–594.

    Article  CAS  PubMed  Google Scholar 

  • Grassetti, D., Paoli, D., Gallo, M., D’Ambrosio, A., Lombardo, F., Lenzi, A., & Gandini, L. (2012). Protamine-1 and -2 polymorphisms and gene expression in male infertility: An Italian study. Journal of Endocrinological Investigation, 35, 882–888.

    CAS  PubMed  Google Scholar 

  • Grindberg, R. V., Yee-Greenbaum, J. L., McConnell, M. J., Novotny, M., O’Shaughnessy, A. L., Lambert, G. M., Arauzo-Bravo, M. J., Lee, J., Fishman, M., Robbins, G. E., et al. (2013). RNA-sequencing from single nuclei. Proceedings of the National Academy of Sciences of the United States of America, 110, 19802–19807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, F., Yan, L., Guo, H., Li, L., Hu, B., Zhao, Y., Yong, J., Hu, Y., Wang, X., Wei, Y., et al. (2015). The Transcriptome and DNA Methylome landscapes of human primordial germ cells. Cell, 161, 1437–1452.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., & Saitou, M. (2011). Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell, 146, 519–532.

    Article  CAS  PubMed  Google Scholar 

  • Hermann, B. P., Mutoji, K. N., Velte, E. K., Ko, D., Oatley, J. M., Geyer, C. B., & McCarrey, J. R. (2015). Transcriptional and translational heterogeneity among neonatal mouse spermatogonia. Biology of Reproduction, 92, 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hough, S. R., Thornton, M., Mason, E., Mar, J. C., Wells, C. A., & Pera, M. F. (2014). Single-cell gene expression profiles define self-renewing, pluripotent, and lineage primed states of human pluripotent stem cells. Stem Cell Reports, 2, 881–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, S., Ernberg, I., & Kauffman, S. (2009). Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Seminars in Cell & Developmental Biology, 20, 869–876.

    Article  CAS  Google Scholar 

  • Huang, L., Ma, F., Chapman, A., Lu, S., & Xie, X. S. (2015). Single-cell whole-genome amplification and sequencing: Methodology and applications. Annual Review of Genomics and Human Genetics, 16, 79–102.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, C. S., Foehr, S., Garfield, D. A., Furlong, E. E., Steinmetz, L. M., & Krijgsveld, J. (2014). Ultrasensitive proteome analysis using paramagnetic bead technology. Molecular systems biology 10, 757.

    Article  CAS  PubMed  Google Scholar 

  • Jang, S., Choubey, S., Furchtgott, L., Zou, L.N., Doyle, A., Menon, V., Loew, E.B., Krostag, A.R., Martinez, R.A., Madisen, L., et al. (2017). Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. eLife, 6.

    Google Scholar 

  • Kooistra, S. M., Thummer, R. P., & Eggen, B. J. (2009). Characterization of human UTF1, a chromatin-associated protein with repressor activity expressed in pluripotent cells. Stem Cell Research, 2, 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen, D. M., Nielsen, J. E., Skakkebaek, N. E., Graem, N., Jacobsen, G. K., Rajpert-De Meyts, E., & Leffers, H. (2008). Presumed pluripotency markers UTF-1 and REX-1 are expressed in human adult testes and germ cell neoplasms. Human Reproduction, 23, 775–782.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Dong, J., Yan, L., Yong, J., Liu, X., Hu, Y., Fan, X., Wu, X., Guo, H., Wang, X., et al. (2017). Single-cell RNA-Seq analysis maps development of human Germline cells and gonadal niche interactions. Cell Stem Cell, 20, 891–892.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Li, Y., Feng, Y., Liu, C., Ma, J., Li, Y., Xiang, H., Ji, Y., Cao, Y., Tong, X., et al. (2016). Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients. Scientific Reports, 6, 39638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luetjens, C. M., Xu, E. Y., Rejo Pera, R. A., Kamischke, A., Nieschlag, E., & Gromoll, J. (2004). Association of meiotic arrest with lack of BOULE protein expression in infertile men. The Journal of Clinical Endocrinology and Metabolism, 89, 1926–1933.

    Article  CAS  PubMed  Google Scholar 

  • Maekawa, M., Yamamoto, T., Kohno, M., Takeichi, M., & Nishida, E. (2007). Requirement for ERK MAP kinase in mouse preimplantation development. Development, 134, 2751–2759.

    Article  CAS  PubMed  Google Scholar 

  • Magnusdottir, E., Dietmann, S., Murakami, K., Gunesdogan, U., Tang, F., Bao, S., Diamanti, E., Lao, K., Gottgens, B., & Azim Surani, M. (2013). A tripartite transcription factor network regulates primordial germ cell specification in mice. Nature Cell Biology, 15, 905–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizrak, S. C., Chikhovskaya, J. V., Sadri-Ardekani, H., van Daalen, S., Korver, C. M., Hovingh, S. E., Roepers-Gajadien, H. L., Raya, A., Fluiter, K., de Reijke, T. M., et al. (2010). Embryonic stem cell-like cells derived from adult human testis. Human Reproduction, 25, 158–167.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, T., Yabuta, Y., Okamoto, I., Aramaki, S., Yokobayashi, S., Kurimoto, K., Sekiguchi, K., Nakagawa, M., Yamamoto, T., & Saitou, M. (2015). SC3-seq: A method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Research, 43, e60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus, N., Yoon, J., Terwort, N., Kliesch, S., Seggewiss, J., Huge, A., Voss, R., Schlatt, S., Grindberg, R. V., & Scholer, H. R. (2017). Single-cell gene expression analysis reveals diversity among human spermatogonia. Molecular Human Reproduction, 23, 79–90.

    CAS  PubMed  Google Scholar 

  • Novershtern, N., Subramanian, A., Lawton, L. N., Mak, R. H., Haining, W. N., McConkey, M. E., Habib, N., Yosef, N., Chang, C. Y., Shay, T., et al. (2011). Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell, 144, 296–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohinata, Y., Ohta, H., Shigeta, M., Yamanaka, K., Wakayama, T., & Saitou, M. (2009). A signaling principle for the specification of the germ cell lineage in mice. Cell, 137, 571–584.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, A., Fukushima, A., Nishimoto, M., Orimo, A., Yamagishi, T., Nabeshima, Y., Kuro-o, M., Nabeshima, Y., Boon, K., Keaveney, M., et al. (1998). UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. The EMBO Journal, 17, 2019–2032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ooi, S. K., & Bestor, T. H. (2008). The colorful history of active DNA demethylation. Cell, 133, 1145–1148.

    Article  CAS  PubMed  Google Scholar 

  • Perrett, R. M., Turnpenny, L., Eckert, J. J., O’Shea, M., Sonne, S. B., Cameron, I. T., Wilson, D. I., Rajpert-De Meyts, E., & Hanley, N. A. (2008). The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture. Biology of Reproduction, 78, 852–858.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, L. L., Gaskell, T. L., Saunders, P. T., & Anderson, R. A. (2001). Germ cell specific expression of c-kit in the human fetal gonad. Molecular Human Reproduction, 7, 845–852.

    Article  CAS  PubMed  Google Scholar 

  • Saliba, A. E., Westermann, A. J., Gorski, S. A., & Vogel, J. (2014). Single-cell RNA-seq: Advances and future challenges. Nucleic Acids Research, 42, 8845–8860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro, E., Biezuner, T., & Linnarsson, S. (2013). Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Reviews Genetics, 14, 618–630.

    Article  CAS  PubMed  Google Scholar 

  • Tanay, A., & Regev, A. (2017). Scaling single-cell genomics from phenomenology to mechanism. Nature, 541, 331–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, F., Lao, K., & Surani, M. A. (2011). Development and applications of single-cell transcriptome analysis. Nature Methods, 8, S6–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valli, H., Sukhwani, M., Dovey, S. L., Peters, K. A., Donohue, J., Castro, C. A., Chu, T., Marshall, G. R., & Orwig, K. E. (2014). Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertility and Sterility, 102(566–580), e567.

    Google Scholar 

  • Virant-Klun, I., Knez, K., Tomazevic, T., & Skutella, T. (2013). Gene expression profiling of human oocytes developed and matured in vivo or in vitro. BioMed Research International, 2013, 879489.

    PubMed  PubMed Central  Google Scholar 

  • Virant-Klun, I., Leicht, S., Hughes, C., & Krijgsveld, J. (2016). Identification of maturation-specific proteins by single-cell proteomics of human oocytes. Molecular & Cellular Proteomics: MCP, 15, 2616–2627.

    Article  CAS  PubMed  Google Scholar 

  • von Kopylow, K., Kirchhoff, C., Jezek, D., Schulze, W., Feig, C., Primig, M., Steinkraus, V., & Spiess, A. N. (2010). Screening for biomarkers of spermatogonia within the human testis: A whole genome approach. Human Reproduction, 25, 1104–1112.

    Article  CAS  Google Scholar 

  • von Kopylow, K., Staege, H., Schulze, W., Will, H., & Kirchhoff, C. (2012a). Fibroblast growth factor receptor 3 is highly expressed in rarely dividing human type a spermatogonia. Histochemistry and Cell Biology, 138, 759–772.

    Article  CAS  Google Scholar 

  • von Kopylow, K., Staege, H., Spiess, A. N., Schulze, W., Will, H., Primig, M., & Kirchhoff, C. (2012b). Differential marker protein expression specifies rarefaction zone-containing human Adark spermatogonia. Reproduction, 143, 45–57.

    Article  CAS  Google Scholar 

  • von Kopylow, K., Schulze, W., Salzbrunn, A., & Spiess, A. N. (2016). Isolation and gene expression analysis of single potential human spermatogonial stem cells. Molecular Human Reproduction, 22, 229–239.

    Article  CAS  Google Scholar 

  • Wagner, A., Regev, A., & Yosef, N. (2016). Revealing the vectors of cellular identity with single-cell genomics. Nature Biotechnology, 34, 1145–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodworth, M. B., Girskis, K. M., & Walsh, C. A. (2017). Building a lineage from single cells: Genetic techniques for cell lineage tracking. Nature Reviews Genetics, 18, 230–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yosef, N., & Regev, A. (2011). Impulse control: Temporal dynamics in gene transcription. Cell, 144, 886–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Skutella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conrad, S., Azizi, H., Skutella, T. (2017). Single-Cell Expression Profiling and Proteomics of Primordial Germ Cells, Spermatogonial Stem Cells, Adult Germ Stem Cells, and Oocytes. In: Van Pham, P. (eds) Stem Cells: Biology and Engineering. Advances in Experimental Medicine and Biology(), vol 1083. Springer, Cham. https://doi.org/10.1007/5584_2017_117

Download citation

Publish with us

Policies and ethics