Skip to main content

Oleic Derivatives of Dopamine and Respiration

  • Chapter
  • First Online:
Pulmonary Disorders and Therapy

Abstract

Ventilatory inhibition is considered an undesirable pharmacological side effect of pharmacotherapy in neurodegenerative conditions underlain by brain dopamine deficiency. In this context, oleic derivatives of dopamine or N-acyl-dopamines are novel substances that may be of high therapeutic interest as having the ability to cross the blood-brain barrier and acting in dopamine-like manner. In the present study we seek to define the influence of N-acyl-dopamines on lung ventilation and its hypoxic responses in the rat. We found that N-oleoyl-dopamine decreased both normoxic and peak hypoxic ventilation in response to 8% acute hypoxia, on average, by 31% and 41%, respectively. Its metabolite, 3′-O-methyl-N-oleoyl-dopamine, caused a 15% ventilatory decrease each, whereas an oleic ester derivative, 3′-O-oleoyl-N-oleoyl-dopamine, caused 11% and 19% ventilatory decreases, respectively. All three N-acyl-dopamines investigated displayed an inhibitory effect on ventilation. The findings indicate that 3′-O-methyl-N-oleoyl-dopamine and 3′-O-oleoyl-N-oleoyl-dopamine performed better than N-oleoyl-dopamine in term of less ventilatory suppression, albeit the differences among the three compounds were modest. We conclude that N-acyl-dopamines are worthy of intensified explorations as potential carriers of dopamine molecule in view of the lack of clinically effective methods of dopamine delivery into the brain in neurodegenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almási R, Szoke E, Bölcskei K, Varga A, Riedl Z, Sándor Z, Szolcsányi J, Petho G (2008) Actions of 3-methyl-N-oleoyldopamine, 4-methyl-N-oleoyldopamine and N-oleoylethanolamide on the rat TRPV1 receptor in vitro and in vivo. Life Sci Mar 82(11–12):644–651

    Article  Google Scholar 

  • Baille G, De Jesus AM, Perez T, Devos D, Dujardin K, Charley CM, Defebvre L, Moreau C (2016) Ventilatory dysfunction in Parkinson’s disease. J Parkinsons Dis 6(3):463–471

    Article  PubMed  PubMed Central  Google Scholar 

  • Bee D, Pallot DJ (1995) Acute hypoxic ventilation, carotid body cell division, and dopamine content during early hypoxia in rats. J Appl Physiol 79:1504–1511

    Article  CAS  PubMed  Google Scholar 

  • Bialkowska M, Zajac D, Mazzatenta A, Di Giulio C, Pokorski M (2015) Inhibition of peripheral dopamine metabolism and the ventilatory response to hypoxia in the rat. Adv Exp Med Biol 837:9–17

    Article  PubMed  Google Scholar 

  • Bialkowska M, Boguszewski P, Pokorski M (2016) Breathing in parkinsonism in the rat. Adv Exp Med Biol 884:1–11

    PubMed  Google Scholar 

  • Cacabelos R (2017) Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci 18(3):551. doi:10.3390/ijms18030551

    Article  PubMed Central  Google Scholar 

  • Chen JJ, Swope DM (2007) Pharmacotherapy for Parkinson’s disease. Pharmacotherapy 27(12 Pt 2):161S–173S

    Article  CAS  PubMed  Google Scholar 

  • Chu CJ, Huang SM, De Petrocellis L, Bisogno T, Ewing SA, Miller JD, Zipkin RE, Daddario N, Appendino G, Di Marzo V, Walker JM (2003) N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J Biol Chem 278:13633–13639

    Article  CAS  PubMed  Google Scholar 

  • Gargaglioni LH, Bícegoa KC, Branco LG (2008) Brain monoaminergic neurons and ventilatory control in vertebrates. Respir Physiol Neurobiol 164(1–2):112–122

    Article  CAS  PubMed  Google Scholar 

  • Goiny M, Lagercrantz H, Srinivasan M, Ungerstedt U, Yamamoto Y (1991) Hypoxia-mediated in vivo release of dopamine in nucleus tractus solitarii of rabbits. J Appl Physiol 70:2395–2400

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Pharmacol Rev 74:874–876

    Google Scholar 

  • Hedner J, Hedner T, Jonason J, Lundberg D (1982) Evidence for a dopamine interaction with the central respiratory control system in the rat. Eur J Pharmacol 81:603–615

    Article  CAS  PubMed  Google Scholar 

  • Hsiao C, Lahiri S, Mokashi A (1989) Peripheral and central dopamine receptors in respiratory control. Respir Physiol 76:327–336

    Article  CAS  PubMed  Google Scholar 

  • Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ, Miller JD, Davies SN, Geppetti P, Walker JM, Di Marzo V (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A 99(12):8400–8405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide T, Shirahata M, Chou CL, Fitzgerald RS (1995) Effects of a continuous infusion of dopamine on the ventilatory and carotid body responses to hypoxia in cats. Clin Exp Pharmacol Physiol 22(9):658–664

    Article  CAS  PubMed  Google Scholar 

  • Kline DD, Takacs KN, Ficker E, Kunze DL (2002) Dopamine modulates synaptic transmission in the nucleus of the solitary tract. J Neurophysiol 88(5):2736–2744

    Article  CAS  PubMed  Google Scholar 

  • Konieczny J, Przegalinski E, Pokorski M (2009) N-oleoyl-dopamine decreases muscle rigidity induced by reserpine in rats. Int J Immunopathol Pharmacol 22:21–28

    Article  CAS  PubMed  Google Scholar 

  • Lawrence AJ, Krstew E, Jarrott B (1995) Functional dopamine D2 receptors on rat vagal afferent neurones. Br J Pharmacol 114:1329–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225

    Article  CAS  PubMed  Google Scholar 

  • Monteiro TC, Obeso A, Gonzalez C, Monteiro EC (2009) Does ageing modify ventilatory responses to dopamine in anaesthetised rats breathing spontaneously? Adv Exp Med Biol 648:265–271

    Article  CAS  PubMed  Google Scholar 

  • Nishino T, Lahiri S (1972) Effects of dopamine on chemoreflexes in breathing. J Appl Physiol 50:892–897

    Article  Google Scholar 

  • Onodera H, Okabe S, Kikuchi Y, Tsuda T, Itoyama Y (2000) Impaired chemosensitivity and perception of dyspnoea in Parkinson’s disease. Lancet 9231:739–740

    Article  Google Scholar 

  • Osanai S, Akiba Y, Matsumoto H, Nakano H, Kikuchi K (1997) Effect of dopamine receptor on hypoxic ventilatory response. Nihon Kyobu Shikkan Gakkai Zasshi 35(12):1318–1323 (Article in Japanese)

    Google Scholar 

  • Pokorski M, Matysiak Z (1998) Fatty acid acylation of dopamine in the carotid body. Med Hypotheses 50(2):131–133

    Article  CAS  PubMed  Google Scholar 

  • Pokorski M, Matysiak Z, Marczak M, Ostrowski R, Kapuściński A, Matuszewska I, Kańska M, Czarnocki Z (2003) Brain uptake of radiolabeled N-oleoyl-dopamine in the rat. Drug Dev Res 60:217–224

    Article  CAS  Google Scholar 

  • Pokorski M, Zajac D, Kapuscinski A, Matysiak Z, Czarnocki Z (2006) Accumulation of radiolabeled N-oleoyl-dopamine in the rat carotid body. Adv Exp Med Biol 580:173–178

    Article  CAS  PubMed  Google Scholar 

  • Przegalinski E, Filip D, Zajac D, Pokorski M (2006) N-oleoyl-dopamine increases locomotor activity in the rat. Int J Immunopathol Pharmacol 19:897–904

    Article  CAS  PubMed  Google Scholar 

  • Redasani VK, Bari SB (2016) Types of prodrug. In: Prodrug design; perspectives, approaches and applications in medicinal chemistry. Chapter 3. Elsevier, pp 21–31

    Google Scholar 

  • Rekawek A, Pokorski M (2011) Influence of 3′-O-methyl-N-oleoyl-dopamine on the hypoxic ventilatory response in the rat. Adv Pneumol. Bonn, Germany; conference abstract. https://www.pneumology.pl/bonn/media/doc/a089.pdf. Accessed on 7 May 2017

  • Serebrovskaya T, Karaban I, Mankovskaya I, Bernardi L, Passino C, Appenzeller O (1998) Hypoxic ventilatory responses and gas exchange in patients with Parkinson’s disease. Respiration 65(1):28–33

    Article  CAS  PubMed  Google Scholar 

  • Tambasco N, Belcastro V, Gallina A, Castrioto A, Calabresi P, Rossi A (2011) Levodopa-induced breathing, cognitive and behavioral changes in Parkinson’s disease. J Neurol 258(12):2296–2299

    Article  PubMed  Google Scholar 

  • Wang Y, Shao WB, Gao L, Lu J, Gu H, Sun LH, Tan Y, Zhang YD (2014) Abnormal pulmonary function and respiratory muscle strength findings in Chinese patients with Parkinson’s disease and multiple system atrophy-comparison with normal elderly. PLoS One 9(12):e116123

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward DS, Bellville JW (1982) Reduction of hypoxic ventilatory drive by dopamine. Anesth Analg 61(4):333–337

    Article  CAS  PubMed  Google Scholar 

  • Welsh MJ, Heistad DD, Abboud FM (1978) Depression of ventilation by dopamine in man. Evidence for an effect on the chemoreceptor reflex. J Clin Invest 61(3):708–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajac D, Pokorski M (2008) The influence of N-oleoyl-dopamine on the respiratory response to hypoxia in rats. Adv Pneumol. Poznan, Poland; conference abstract, https://www.pneumology.pl/poznan/doc/a013.pdf. Accessed on 7 May 2017

  • Zajac D, Matysiak Z, Czarnocki Z, Pokorski M (2006) Membrane association of N-oleoyl-dopamine in rat brain. J Physiol Pharmacol 57(Suppl 4):403–408

    PubMed  Google Scholar 

  • Zajac D, Roszkowski P, Czarnocki Z, Pokorski M (2010) Influence of TRPV1 (vanilloid) blockade on the respiratory response to hypoxia after N-oleoyl-dopamine in anesthetized rats. Adv Pneumol. Warszawa, Poland; conference abstract, https://www.pneumology.pl/warsaw2010/media/doc/a059.pdf. Accessed on 7 May 2017

  • Zajac D, Porebska I, Roszkowski P, Czarnocki Z, Pokorski M (2012) 3′-oleoyl-N-oleoyl-dopamine – a prodrug of N-oleoyl-dopamine. Adv Pneumol. Wroclaw, Poland; conference abstract, https://www.pneumology.pl/wroclaw/media/pdf/ab268_1.pdf. Accessed on 7 May 2017

  • Zajac D, Spolnik G, Roszkowski P, Danikiewicz W, Czarnocki Z, Pokorski M (2014) Metabolism of N-acylated-dopamine. PLoS One 9(1):e85259

    Article  PubMed  PubMed Central  Google Scholar 

  • Zapata P, Zuazo A (1980) Respiratory effects of dopamine-induced inhibition of chemosensory inflow. Respir Physiol 40:79–92

    Article  CAS  PubMed  Google Scholar 

  • Zapata P, Iturriaga R, Larraín C (1996) Domperidone as a tool to assess the role of dopamine within carotid body chemoreception. Adv Exp Med Biol 410:291–297

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors of this work are inventors of the European and US patents covering the medical applications of OMe-OLDA supported in part by the EU Innovative Economy grant POIG 1.3.2.-14–047/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieczyslaw Pokorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zajac, D., Stasinska, A., Pokorski, M. (2017). Oleic Derivatives of Dopamine and Respiration. In: Pokorski, M. (eds) Pulmonary Disorders and Therapy. Advances in Experimental Medicine and Biology(), vol 1023. Springer, Cham. https://doi.org/10.1007/5584_2017_73

Download citation

Publish with us

Policies and ethics