Skip to main content

Targeted Drug Delivery from Titanium Implants: A Review of Challenges and Approaches

  • Chapter
  • First Online:
Trends in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((CLEXBI,volume 1251))

Abstract

Titanium implants are considered the gold standard of treatment for dental and orthopedic applications. Biocompatibility, low elasticity, and corrosion resistance are some of the key properties of these metallic implants. Nonetheless, a long-term clinical failure of implants may occur due to inadequate osseointegration. Poor osseointegration induces mobility, inflammation, increased bone resorption, and osteolysis; hence, it may result in painful revision surgeries. Topographical modifications, improvement in hydrophilicity, and the development of controlled-release drug-loading systems have shown to improve cellular adhesion, proliferation, and differentiation. Surface modifications, along with drug coating, undoubtedly demonstrate better osseointegration, especially in challenged degenerative conditions, such as osteoporosis, osteoarthritis, and osteogenesis imperfecta. Anabolic bone-acting drugs, such as parathyroid hormone peptides, simvastatin, prostaglandin-EP4-receptor antagonist, vitamin D, strontium ranelate, and anti-catabolic bone-acting drugs, such as calcitonin, bisphosphonates, and selective estrogen receptor modulators, expedite the process of osseointegration. In addition, various proteins, peptides, and growth factors may accessorize the idea of localized therapy. Loading these substances on modified titanium surfaces is achieved commonly by mechanisms such as direct coating, adsorption, and incorporating in biodegradable polymers. The primary approach toward the optimum drug loading is a critical trade-off between factors preventing release of a drug immediately and those allowing slow and sustained release. Recent advances broaden the understanding of the efficacy of adsorption, hydrogel coating, and electrospinning layer-by-layer coating facilitated by differential charge on metallic surface. This review discusses the existing approaches and challenges for the development of stable and sustained drug delivery systems on titanium implants, which would promote faster and superior osseointegration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainslie KM, Tao SL, Popat KC, Daniels H, Hardev V, Grimes CA, Desai TA (2009) In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res A 91(3):647–655

    Article  PubMed  CAS  Google Scholar 

  • Al-Enizi A, Zagho M, Elzatahry A (2018) Polymer-based electrospun nanofibers for biomedical applications. Nano 8(4):259

    Google Scholar 

  • Amor N, Geris L, Vander Sloten J, Van Oosterwyck H (2011) Computational modelling of biomaterial surface interactions with blood platelets and osteoblastic cells for the prediction of contact osteogenesis. Acta Biomater 7(2):779–790

    Article  CAS  PubMed  Google Scholar 

  • Anselmo AC, Mitragotri S (2014) An overview of clinical and commercial impact of drug delivery systems. J Control Release 190:15–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anumolu SS, Singh Y, Gao D, Stein S, Sinko PJ (2009) Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response. J Control Release 137(2):152–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashbaugh AG, Jiang X, Zheng J, Tsai AS, Kim WS, Thompson JM, Thompson JM, Miller RJ, Shahbazian JH, Wang Y, Dillen CA, Ordonez AA, Chang YS, Jain SK, Jones LC, Sterling RS, Mao HQ, Miller LS (2016) Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo. Proc Natl Acad Sci U S A 113(45):E6919–E6928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aw MS, Addai-Mensah J, Losic D (2012) A multi-drug delivery system with sequential release using titania nanotube arrays. Chem Commun (Camb) 48(27):3348–3350

    Article  CAS  Google Scholar 

  • Azhang H, Suman SR, Christos T, Mathew TM, Cortino S, Alexander LY, Tolou S (2015) Fabrication of drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes. J Phys D Appl Phys 48(27):275401

    Article  CAS  Google Scholar 

  • Barik A, Banerjee S, Dhara S, Chakravorty N (2017) A reductionist approach to extract robust molecular markers from microarray data series – isolating markers to track osseointegration. J Biomed Inform 68:104–111

    Article  PubMed  Google Scholar 

  • Bistolfi A, Massazza G, Verné E, Massè A, Deledda D, Ferraris S, Miola M, Galetto F, Crova M (2011) Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthop 2011:290851

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S (2010) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92A(3):1218–1224

    CAS  Google Scholar 

  • Bloebaum RD, Bachus KN, Momberger NG, Hofmann AA (1994) Mineral apposition rates of human cancellous bone at the interface of porous coated implants. J Biomed Mater Res 28(5):537–544

    Article  CAS  PubMed  Google Scholar 

  • Boot W, Gawlitta D, Nikkels PGJ, Pouran B, van Rijen MHP, Dhert WJA, Vogely HC (2017) Hyaluronic acid-based hydrogel coating does not affect bone apposition at the implant surface in a rabbit model. Clin Orthop Relat Res 475(7):1911–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudou T, Crouzier T, Ren K, Blin G, Picart C (2010) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 22(4):441–467

    Article  CAS  PubMed  Google Scholar 

  • Brandi ML (2012) Drugs for bone healing. Expert Opin Investig Drugs 21(8):1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Brånemark R, Brånemark PI, Rydevik B, Myers RR (2001) Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 38:175–181

    PubMed  Google Scholar 

  • Buchholz HW, Engelbrecht H (1970) Depot effects of various antibiotics mixed with palacos resins. Chirurg 41(11):511–515

    CAS  PubMed  Google Scholar 

  • Chan KS, Koike M, Mason RL, Okabe T (2013) Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants. Metall Mater Trans 44(2):1010–1022

    Article  CAS  Google Scholar 

  • Chapman MW, Hadley WK (1976) The effect of polymethylmethacrylate and antibiotic combinations on bacterial viability. An in vitro and preliminary in vivo study. Bone Joint Surg Am 58(1):76–81

    Article  CAS  Google Scholar 

  • Concheiro A, Alvarez-Lorenzo C (2013) Chemically cross-linked and grafted cyclodextrin hydrogels: from nanostructures to drug-eluting medical devices. Adv Drug Deliv Rev 65(9):1188–1203

    Article  CAS  PubMed  Google Scholar 

  • Corobea MS, Albu MG, Ion R, Cimpean A, Miculescu F, Antoniac IV, Raditoiu V, Sirbu I, Stoenescu M, Voicu SI, Ghica MV (2015) Modification of titanium surface with collagen and doxycycline as a new approach in dental implants. J Adhes Sci Technol 29(23):2537–2550

    Article  CAS  Google Scholar 

  • Cortizo MC, Oberti TG, Cortizo MS, Cortizo AM, Fernández Lorenzo de Mele MA (2012) Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: evaluation of cytotoxicity and early bacterial adhesion. J Dent 40(4):329–337

    Article  CAS  PubMed  Google Scholar 

  • Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev 17(5):349–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damiati L, Eales MG, Nobbs AH, Su B, Tsimbouri PM, Salmeron-Sanchez M, Dalby MJ (2018) Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants. J Tissue Eng 9:2041731418790694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67(8):932–949

    PubMed  Google Scholar 

  • Davies JE, Ajami E, Moineddin R, Mendes VV (2013) The roles of different scale ranges of surface implant topography on the stability of the bone/implant interface. Biomaterials 34(14):3535–3546

    Article  CAS  PubMed  Google Scholar 

  • Dawes GJ, Fratila-Apachitei LE, Necula BS, Apachitei I, Witkamp GJ, Duszczyk J (2010) Release of PLGA-encapsulated dexamethasone from microsphere loaded porous surfaces. J Mater Sci Mater Med 21(1):215–221

    Article  CAS  PubMed  Google Scholar 

  • De Giglio E, Trapani A, Cafagna D, Ferretti C, Iatta R, Cometa S, Ceci C, Romanelli A, Mattioli-Belmonte M (2012) Cirpofloxacin-loaded chitosan nanoparticles as titanium coatings: a valuable strategy to prevent implant associated infections. Nano Biomed Eng 4(4):162–168

    Article  CAS  Google Scholar 

  • de Jonge LT, Leeuwenburgh SC, Wolke JG, Jansen JA (2008) Organic-inorganic surface modifications for titanium implant surfaces. Pharm Res 25(10):2357–2369

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Zhang S, Liu H, Li X, Liu Y, Du Y (2014) Novel alternative therapy for spinal tuberculosis during surgery: reconstructing with anti-tuberculosis bioactivity implants. Expert Opin Drug Deliv 11(3):299–305

    Article  CAS  PubMed  Google Scholar 

  • Donos N, Hamlet S, Lang NP, Salvi GE, Huynh-Ba G, Bosshardt DD, Ivanovski S (2011) Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface. Clin Oral Implants Res 22(4):365–372

    Article  CAS  PubMed  Google Scholar 

  • Drago L, Boot W, Dimas K, Malizos K, Hänsch GM, Stuyck J, Gawlitta D, Romanò CL (2014) Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro? Clin Orthop Relat Res 472(11):3311–3323

    Article  PubMed  PubMed Central  Google Scholar 

  • Esposito M, Lausmaa J, Hirsch JM, Thomsen P (1999) Surface analysis of failed oral titanium implants. J Biomed Mater Res 48(4):59–568

    Article  Google Scholar 

  • Faverani LP, Polo TOB, Ramalho-Ferreira G, Momesso GAC, Hassumi JS, Rossi AC, Freire AR, Prado FB, Luvizuto ER, Gruber R, Okamoto R (2018) Raloxifene but not alendronate can compensate the impaired osseointegration in osteoporotic rats. Clin Oral Investig 22(1):255–265

    Article  PubMed  Google Scholar 

  • Ferraris S, Bobbio A, Miola M, Spriano S (2015) Micro- and nano-textured, hydrophilic and bioactive titanium dental implants. Surf Coat Technol 276:374–383

    Article  CAS  Google Scholar 

  • Geuli O, Metoki N, Zada T, Reches M, Eliaz N, Mandler D (2017) Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. J Mater Chem B 5(38):7819–7830

    Article  CAS  PubMed  Google Scholar 

  • Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD (2014) Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater 10(8):3363–3371

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillot R, Pignot-Paintrand I, Lavaud J, Decambron A, Bourgeois E, Josserand V, Logeart-Avramoglou D, Viguier E, Picart C (2016) Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle. Acta Biomater 36:310–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati K, Ramakrishnan S, Aw MS, Atkins GJ, Findlay DM, Losic D (2012) Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater 8(1):449–456

    Article  CAS  PubMed  Google Scholar 

  • Hassanin H, Finet L, Cox SC, Jamshidi P, Grover LM, Shepherd DET, Addison O, Attallah MM (2018) Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels. Addit Manuf 20:144–155

    CAS  Google Scholar 

  • Heinl P, Müller L, Körner C, Singer RF, Müller FA (2008) Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536–1544

    Article  CAS  PubMed  Google Scholar 

  • Holm NJ, Vejlsgaard R (1976) The in vitro elution of gentamicin sulphate from methylmethacrylate bone cement. A comparative study. Acta Orthop Scand 47(2):44–148

    Article  Google Scholar 

  • Januario AL, Sallum EA, de Toledo S, Sallum AW, Nociti JF Jr (2001) Effect of calcitonin on bone formation around titanium implant. A histometric study in rabbits. Braz Dent J 12(3):158–162

    CAS  PubMed  Google Scholar 

  • Javed F, Ahmed HB, Crespi R, Romanos GE (2013) Role of primary stability for successful osseointegration of dental implants: factors of influence and evaluation. Interv Med Appl Sci 5(4):162–167

    PubMed  PubMed Central  Google Scholar 

  • Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17

    Article  CAS  Google Scholar 

  • Ketonis C, Parvizi J, Jones LC (2012) Evolving strategies to prevent implant-associated infections. J Am Acad Orthop Surg 20(7):478–480

    Article  PubMed  Google Scholar 

  • Khadka D, Haynie DT (2012) Protein- and peptide-based electrospun nanofibers in medical biomaterials. Nanomedicine 8(8):1242–1262

    Article  CAS  PubMed  Google Scholar 

  • Khandaker M, Riahinezhad S, Williams WR, Wolf R (2017) Microgroove and collagen-poly(epsilon – caprolactone) nanofiber mesh coating improves the mechanical stability and osseointegration of titanium implants. Nanomaterials (Basel) 7(6):145

    Article  CAS  Google Scholar 

  • Klokkevold PR, Nishimura RD, Adachi M, Caputo A (1997) Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clin Oral Implants Res 8(6):442–447

    Article  CAS  PubMed  Google Scholar 

  • Kohane DS (2007) Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 96(2):203–209

    Article  CAS  PubMed  Google Scholar 

  • Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M (2005) Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am 87(7):1487–1497

    PubMed  Google Scholar 

  • Kyllonen L, D’Este M, Alini M, Eglin D (2015) Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 11:412–434

    Article  CAS  PubMed  Google Scholar 

  • Lai K, Xi Y, Miao X, Jiang Z, Wang Y, Wang H, Yang G (2017) PTH coatings on titanium surfaces improved osteogenic integration by increasing expression levels of BMP-2/Runx2/Osterix. RSC Adv 7(89):56256–56265

    Article  CAS  Google Scholar 

  • Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23(7):844–854

    Article  PubMed  CAS  Google Scholar 

  • Li YJ, Lu CC (2015) A novel scheme and evaluations on a long-term and continuous biosensor platform integrated with a dental implant fixture and its prosthetic abutment. Sensors (Basel) 15(10):24961–24976

    Article  Google Scholar 

  • Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ, Koak JY (2004) Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 25(14):2867–2875

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li X, Song G, Chen K, Yin G, Hu J (2012a) Effects of strontium ranelate on osseointegration of titanium implant in osteoporotic rats. Clin Oral Implants Res 23(9):1038–1044

    Article  PubMed  Google Scholar 

  • Li LL, Wang LM, Xu Y, Lv LX (2012b) Preparation of gentamicin-loaded electrospun coating on titanium implants and a study of their properties in vitro. Arch Orthop Trauma Surg 132(6):897–903

    Article  PubMed  Google Scholar 

  • Li D, Lv P, Fan L, Huang Y, Yang F, Mei X, Wu D (2017) The immobilization of antibiotic-loaded polymeric coatings on osteoarticular Ti implants for the prevention of bone infections. Biomater Sci 5(11):2337–2346

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Xu S, Shen M, Cheng B, Li Y, Liu X, Qin D, Bellare A, Kong L (2017) Osteogenic activity of titanium surfaces with hierarchical micro−/nano-structures obtained by hydrofluoric acid treatment. Int J Nanomedicine 12:1317–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Heredia MA, Goyenvalle E, Aguado E, Pilet P, Leroux C, Dorget M, Weis P, Layrolle P (2008) Bone growth in rapid prototyped porous titanium implants. J Biomed Mater Res A 85(3):664–673

    Article  CAS  PubMed  Google Scholar 

  • Maïmoun L, Brennan TC, Badoud I, Dubois-Ferriere V, Rizzoli R, Ammann P (2010) Strontium ranelate improves implant osseointegration. Bone 46(5):1436–1441

    Article  PubMed  CAS  Google Scholar 

  • Mandracci P, Mussano F, Rivolo P, Carossa S (2016) Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coatings 6(1):7

    Article  CAS  Google Scholar 

  • Marks KE, Nelson CL, Lautenschlager EP (1976) Antibiotic-impregnated acrylic bone cement. J Bone Joint Surg Am 58(3):358–364

    Article  CAS  PubMed  Google Scholar 

  • Masri BA, Duncan CP, Beauchamp CP (1998) Long-term elution of antibiotics from bone-cement: an in vivo study using the prosthesis of antibiotic-loaded acrylic cement (PROSTALAC) system. J Arthroplasty 13(3):331–338

    Article  CAS  PubMed  Google Scholar 

  • Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350(5):459–468

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio S, Brama M, Spera G (2007) The differential effects of bisphosphonates, SERMS (selective estrogen receptor modulators), and parathyroid hormone on bone remodeling in osteoporosis. Clin Interv Aging 2(1):55–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mombelli A, van Oosten MA, Schürch E Jr, Lang NP (1987) The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 2(4):145–151

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Vega AI, Gómez-Quintero T, Nuñez-Anita RE, Acosta-Torres LS, Castaño V (2012) Polymeric and ceramic nanoparticles in biomedical applications. J Nanotechnol 2012:10

    Article  CAS  Google Scholar 

  • Nerantzaki M, Skoufa E, Adam KV, Nanaki S, Avgeropoulos A, Kostoglou M, Bikiaris D (2018) Amphiphilic block copolymer microspheres derived from castor oil, poly(ε-carpolactone), and poly(ethylene glycol): preparation, characterization and application in naltrexone drug delivery. Materials (Basel) 11(10). https://doi.org/10.3390/ma11101996

  • Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three imensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27(35):5892–5900

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Zhou Z, Yu X (2018) Coatings as the useful drug delivery system for the prevention of implant-related infections. J Orthop Surg Res 13(1):220

    Article  PubMed  PubMed Central  Google Scholar 

  • Park YS, Cho JY, Lee SJ, Hwang CI (2014) Modified titanium implant as a gateway to the human body: the implant mediated drug delivery system. Biomed Res Int 2014:801358

    PubMed  PubMed Central  Google Scholar 

  • Pokrowiecki R (2018) The paradigm shift for drug delivery systems for oral and maxillofacial implants. Drug Deliv 25(1):1504–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poth N, Seiffart V, Gross G, Menzel H, Dempwolf W (2015) Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2. Biomol Ther 5(1):3–19

    CAS  Google Scholar 

  • Qayoom I, Raina DB, Širka A, Tarasevičius Š, Tägil M, Kumar A, Lidgren L (2018) Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair. Bone Joint Res 7(10):548–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian X, Qing F, Jun O, Hong S (2014) Construction of drug-loaded titanium implants via layer-by-layer electrostatic self-assembly. Hua Xi Kou Qiang Yi Xue Za Zhi 32(6):537–541. (Article in Chinese)

    PubMed  Google Scholar 

  • Rams TE, Roberts TW, Tatum H, Keyes PH (1984) The subgingival microbial flora associated with human dental implants. J Prosthet Dent 51(4):529–534

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro M, Monteiro FJ, Ferraz MP (2012) Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2(4):176–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Romano CL, Scarponi S, Gallazzi E, Romano D, Drago L (2015) Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadri M, Pashmfroosh N, Samadieh S (2017) Implants modified with polymeric nanofibers coating containing the antibiotic vancomycin. Nanomed Res J 2(4):208–215

    CAS  Google Scholar 

  • Salou L, Hoornaert A, Louarn G, Layrolle P (2015) Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomater 11:494–502

    Article  CAS  PubMed  Google Scholar 

  • Santos MCLG, Campos MIG, Line SRP (2002) Early dental implant failure: a review of the literature. Braz J Oral Sci 1:103–111

    Google Scholar 

  • Santos A, Sinn Aw M, Bariana M, Kumeria T, Wang Y, Losic D (2014) Drug-releasing implants: current progress, challenges and perspectives. J Mater Chem B 2(37):6157–6182

    Article  CAS  PubMed  Google Scholar 

  • Shah FA, Trobos M, Thomsen P, Palmquist A (2016) Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants – is one truly better than the other? Mater Sci Eng C 62:960–966

    Article  CAS  Google Scholar 

  • Shi Q, Qian Z, Liu D, Liu H (2017) Surface modification of dental titanium implant by layer-by-layer electrostatic self-assembly. Front Physiol 8:574–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibamoto A, Ogawa T, Duyck J, Vandamme K, Naert I, Sasaki K (2018) Effect of high frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration. Int J Oral Sci 10(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu Y, Ou G, Wang L, Zou J, Li Q (2011) Surface modification of titanium with heparin-chitosan multilayers via layer-by-layer self-assembly technique. J Nanomater 2011:8

    Article  CAS  Google Scholar 

  • Sirivisoot S, Pareta R, Webster TJ (2011) Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology 22(8):085101

    Article  PubMed  CAS  Google Scholar 

  • Slaets E, Carmeliet G, Naert I, Duyck J (2007) Early trabecular bone healing around titanium implants: a histologic study in rabbits. J Periodontol 78(3):510–517

    Article  PubMed  Google Scholar 

  • Son JS, Choi YA, Park EK, Kwon TY, Kim KH, Lee KB (2013) Drug delivery from hydroxyapatite-coated titanium surfaces using biodegradable particle carriers. J Biomed Mater Res B Appl Biomater 101B(2):247–257

    Article  CAS  Google Scholar 

  • Song W, Seta J, Chen L, Bergum C, Zhou Z, Kanneganti P, Kast RE, Auner GW, Shen M, Markel DC, Ren W, Yu X (2017) Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection. Biomed Mater 12(4):045008

    Article  PubMed  Google Scholar 

  • Sosnik A, Seremeta K (2017) Polymeric hydrogels as technology platform for drug delivery applications. Gels 3(3):25

    Article  PubMed Central  CAS  Google Scholar 

  • Staruch R, Griffin MF, Butler P (2016) Nanoscale surface modifications of orthopaedic implants: state of the art and perspectives. Open Orthop J 10:920–938

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffi C, Shi Z, Kong CH, Wang W (2017) In vitro findings of titanium functionalized with estradiol via polydopamine adlayer. J Funct Biomater 8(4):45

    Article  PubMed Central  CAS  Google Scholar 

  • Stigter M, Bezemer J, de Groot K, Layrolle P (2004) Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release 99(1):127–137

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Ryu K, Kojima K, Saito S, Nagaoka H, Tokuhashi Y (2017) Teriparatide treatment improved loosening of cementless total knee arthroplasty: a case report. J Orthop Case Rep 7(1):32–35

    PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Sukezaki F, Shibuki T, Toyoshima Y, Nagai T, Inagaki K (2018) Teriparatide administration increases periprosthetic bone mineral density after total knee arthroplasty: a prospective study. J Arthroplast 33(1):79–85

    Article  Google Scholar 

  • Tıraş MB, Noyan V, Yıldız A, Yıldırım M, Daya S (2000) Effects of alendronate and hormone replacement therapy, alone or in combination, on bone mass in postmenopausal women with osteoporosis: a prospective, randomized study. Hum Reprod 15(10):2087–2092

    Article  PubMed  Google Scholar 

  • Tobin EJ (2017) Recent coating developments for combination devices in orthopedic and dental applications: a literature review. Adv Drug Deliv Rev 112:88–100

    Article  CAS  PubMed  Google Scholar 

  • Vasconcellos LMR, Oliveira MV, Graça MLA, Vasconcellos LGO, Cairo CAA, Carvalho YR (2008) Design of dental implants, influence on the osteogenesis and fixation. J Mater Sci Mater Med 19(8):2851–2857

    Article  CAS  PubMed  Google Scholar 

  • Virdi AS, Irish J, Sena K, Liu M, Ke H, McNulty M, Sumner DR (2015) Sclerostin antibody treatment improves implant fixation in a model of severe osteoporosis. J Bone Joint Surg Am 97(2):133–140

    Article  PubMed  Google Scholar 

  • Wang D, Liu Q, Xiao D, Guo T, Ma Y, Duan K, Wang J, Lu X, Feng B, Weng J (2015) Microparticle entrapment for drug release from porous-surfaced bone implants. J Microencapsul 32(5):443–449

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Huang JY, Li HQ, Chen Z, Zhao AZ, Wang Y, Zhang KQ, Sun HT, Al-Deyab SS, Lai YK (2016) TiO2 nanotube platforms for smart drug delivery: a review. Int J Nanomedicine 11:4819–4834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Weng Z, Liu X, Yeung KWK, Pan H, Wu S (2017) Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioact Mater 2(1):44–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, Lendlein A, Ballauff M, Haag R (2014) Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed Engl 53(31):8004–8031

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Liu Q, Wang D, Xie T, Guo T, Duan K, Weng J (2014) Room temperature attachment of PLGA microspheres to titanium surfaces for implant-based drug release. Appl Surf Sci 309:112–118

    Article  CAS  Google Scholar 

  • Xie Y, Li J, Yu ZM, Wei Q (2017) Nano modified SLA process for titanium implants. Mater Lett 186:38–41

    Article  CAS  Google Scholar 

  • Yamaki K, Kataoka Y, Ohtsuka F, Miyazaki T (2012) Micro-CT evaluation of in vivo osteogenesis at implants processed by wire-type electric discharge machining. Dent Mater J 31(3):427–432

    Article  PubMed  Google Scholar 

  • Zemtsova EG, Arbenin AY, Valiev RZ, Smirnov VM (2018) Improvement of the mechanical and biomedical properties of implants via the production of nanocomposite based on nanostructured titanium matrix and bioactive nanocoating. In: Anisimov K et al (eds) Proceedings of the scientific-practical conference ‘Research and Development – 2016’. Springer, Cham

    Google Scholar 

  • Zhang L, Yan J, Yin Z, Tang C, Guo Y, Li D, Wei B, Xu Y, Gu Q, Wang L (2014) Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int J Nanomedicine 9:3027–3036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Liu H, Deng H, Xiao L, Qin C, Du Y, Shi X (2014) A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Colloids Surf B Biointerfaces 123:657–663

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors declare that they have no conflicts of interest in relation to this article.

Ethical Approval

This review article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant Chakravorty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barik, A., Chakravorty, N. (2019). Targeted Drug Delivery from Titanium Implants: A Review of Challenges and Approaches. In: Pokorski, M. (eds) Trends in Biomedical Research. Advances in Experimental Medicine and Biology(), vol 1251. Springer, Cham. https://doi.org/10.1007/5584_2019_447

Download citation

Publish with us

Policies and ethics