Skip to main content

Polymer Membranes for Sustainable Technologies

  • Chapter
  • First Online:
Polymers - Opportunities and Risks II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 12))

  • 1491 Accesses

Abstract

Membrane-based processes have found wide acceptance and are used as powerful alternatives for conventional techniques such as distillation, extraction, or energy production. Frequently, membranes prepared from commodity polymers do not have the desired properties for the various applications. For example, fouling is still an unsolved problem in membrane applications, which is closely related to surface properties of both the membrane and the foulant. To meet the requirements for the various tasks, membranes with tailor-made properties are needed. In this contribution on the one hand surface modification techniques are described, which are used to (a) obtain microfiltration membranes with low-fouling tendency and (b) to prepare membranes with required properties in pervaporation separation applications. On the other hand modification/functionalization of polymers for use as ion-exchange membranes in energy-producing systems (fuel cells) are discussed. The focus is set on surface modification with polyelectrolytes and polyelectrolyte multilayer systems. This versatile technique enables the preparation of porous membranes with adjustable surface charge and low-fouling tendency without interference of permeate quality. Dense pervaporation membranes based on polyelectrolyte multilayer systems, with high selectivities and moderately high flux were obtained. The performance of such membranes can be controlled by the polyelectrolytes used (charge density) and the preparation conditions (e.g. temperature). Finally, a short introduction of new membrane materials based on fully aromatic polymers as alternatives to perfluoroalkylsulfonic acids, such as Nafion, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α :

Separation factor

ε :

Porosity

η :

Dynamic viscosity of the permeate (Pa s)

σ :

Ion conductivity (mS cm−1)

ΔPtr = (P1–P2):

Transmembrane pressure difference (kPa)

d:

Effective capillary length (m)

F:

Membrane area (m2)

IEC:

Ion-exchange capacity (mmol g−1)

JV :

Volume flux (m3 m−2 min−1)

rP :

Mean pore radius (m)

t:

Time (min)

V:

Volume (m3)

VOC:

Volatile organic compound

References

  1. Pereira Nunes S, Peinemann K (eds) (2006) Membrane technology in the chemical industry, 2nd edn. Wiley, Weinheim

    Google Scholar 

  2. Scherer GG (ed) Adv Polym Sci 215/216 (2008) Fuel cells. Springer, Berlin, Heidelberg

    Google Scholar 

  3. Staude E (ed) (1992) Membranen und Membranprozesse. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  4. Lipnizki F, Trågårdh G (2001) Sep Pur Meth 30:49

    Article  CAS  Google Scholar 

  5. Bierenbaum HS, Isaacson RB, Lantos PR (1969 ) US Patent 3426754

    Google Scholar 

  6. Gore RW (1976 ) US Patent 3953566

    Google Scholar 

  7. Soehngen JW, Ostrander K (1981 ) US Patent 4257997

    Google Scholar 

  8. Fisher HM, Leone DE (1989 ) EP Patent 0342026

    Google Scholar 

  9. Sarada T, Sawyer LC, Ostler MI (1983) J Memb Sci 15:97

    Article  CAS  Google Scholar 

  10. Sadeghi F, Ajji A, Carreau PJ (2007) J Memb Sci 292:62

    Article  CAS  Google Scholar 

  11. Tabatabaei SH, Carreau PJ, Ajji A (2008) J Memb Sci 325:772

    Article  CAS  Google Scholar 

  12. Kim J, Kim S, Park M, Jang M (2008) J Memb Sci 318:201

    Article  CAS  Google Scholar 

  13. Xi Z, Xu Y, Zhu L, Du C, Zhu B (2008) Polym Adv Technol 19:1616

    CAS  Google Scholar 

  14. Guillot G, Rondelez F (1981) J Appl Phys 52:7155

    Article  CAS  Google Scholar 

  15. He X, Sun Z, Wan C (2006) Rad Meas 41:112

    Article  CAS  Google Scholar 

  16. Apel P, Blonskaya I, Orelovitch O, Dmitriev SN (2009) Nucl Instrum Method Phys Res B 267:1023

    Article  CAS  Google Scholar 

  17. Loeb S, Sourirajan S (1962) Adv Chem Ser 38:117

    Article  Google Scholar 

  18. Matsuyama H, Berghmans S, Batarseh MT, Lloyd DR (1999) Formation of anisotropic and asymmetric membranes via thermally-induced phase separation. In: Pinnau I, Freeman BD (eds) Membrane formation and modification. American Chemical Society, Washington, DC, p 23

    Chapter  Google Scholar 

  19. Kim KJ, Fane AG (1995) J Memb Sci 99:149

    Article  CAS  Google Scholar 

  20. Zydney AL (ed) (1996) Microfiltration and ultrafiltration, principles and technical applications. Marcel Dekker, New York

    Google Scholar 

  21. Belfort G, Brewster ME, Chung KJ (1993 ) US Patent 5204002

    Google Scholar 

  22. Belfort G (1997 ) US Patent 5626758

    Google Scholar 

  23. Flemming H, Schaule G, Griebe T, Schmitt J, Tamachkiarowa A (1997) Desalination 113:215

    Article  CAS  Google Scholar 

  24. Howell JA (1995) J Memb Sci 107:165

    Article  CAS  Google Scholar 

  25. Field RW, Wu D, Howell JA, Gupta BB (1995) J Memb Sci 100:259

    Article  CAS  Google Scholar 

  26. Bacchin P, Aimar P, Field RW (2006) J Memb Sci 281:42

    Article  CAS  Google Scholar 

  27. Ulbricht M (2006) Polymer 47:2217

    Article  CAS  Google Scholar 

  28. Wu Y, Yu S, Mi F, Wu C, Shyu S, Peng C, Chao A (2004) Carbohydr Polym 57:435

    Article  CAS  Google Scholar 

  29. Goddard JM, Hotchkiss JH (2007) Prog Polym Sci 32:698

    Article  CAS  Google Scholar 

  30. Yao F, Fu G, Zhao J, Kang E, Neoh KG (2008) J Memb Sci 319:149

    Article  CAS  Google Scholar 

  31. Maartens A, Swart P, Jacobs EP (2000) J Colloid Interface Sci 221:137

    Article  CAS  Google Scholar 

  32. Ulbricht M, Belfort G (1996) J Memb Sci. 111:193

    Article  CAS  Google Scholar 

  33. Cho DL, Ekengren Ö (1993) J Appl Polym Sci 47:2125

    Article  CAS  Google Scholar 

  34. Osada Y, Honda K, Ohta M (1986) J Memb Sci 27:327

    Article  CAS  Google Scholar 

  35. Rieser T, Lunkwitz K, Berwald S, Meier-Haack J, Müller M, Cassel F, Dioszeghy Z, Simon F (1999) Surface modification of microporous polypropylene membranes by polyelectrolyte multilayers. In: Pinnau I, Freeman BD (eds) Membrane formation modification. American Chemical Society, Washington, DC, p 189

    Chapter  Google Scholar 

  36. Carroll T, Booker NA, Meier-Haack J (2002) J Memb Sci 203:3

    Article  CAS  Google Scholar 

  37. Pieracci J, Crivello JV, Belfort G (1999) J Memb Sci 156:223

    Article  CAS  Google Scholar 

  38. Krasemann L, Tieke B (1998) J Memb Sci 150:23

    Article  CAS  Google Scholar 

  39. El-Hashani A, Toutianoush A, Tieke B (2008) J Memb Sci 318:65

    Article  CAS  Google Scholar 

  40. Meier-Haack J, Lenk W, Lehmann D, Lunkwitz K (2001) J Memb Sci 184:233

    Article  CAS  Google Scholar 

  41. Meier-Haack J, Derenko S, Seng J (2007) Sep Sci Technol 42:2881

    Article  CAS  Google Scholar 

  42. Sanchez-Valdes S, Ortega-Ortiz H, Ramos-de Valle LF, Medellin-Rodriguez FJ, Guedea-Miranda R (2009) J Appl Polym Sci 111:953

    CAS  Google Scholar 

  43. Qiu C, Nguyen QT, Ping Z (2007) J Memb Sci 295:88

    Article  CAS  Google Scholar 

  44. Hesampour M, Huuhilo T, Mäkinen K, Mänttäri M, Nyström M (2008) J Memb Sci 310:85

    Article  CAS  Google Scholar 

  45. Kang S, Asatekin A, Mayes AM, Elimelech M (2007) J Memb Sci 296:42

    Article  CAS  Google Scholar 

  46. Asatekin A, Kang S, Elimelech M, Mayes AM (2007) J Memb Sci 298:136

    Article  CAS  Google Scholar 

  47. Asatekin A, Menniti A, Kang S, Elimelech M, Morgenroth E, Mayes AM (2006) J Memb Sci 285:81

    Article  CAS  Google Scholar 

  48. Kim J, Park P, Lee C, Kwon H (2008) J Memb Sci 321:190

    Article  CAS  Google Scholar 

  49. Kang D, Cao Y, Zhao H, Yuan Q (2008) J Memb Sci 318:227

    Article  CAS  Google Scholar 

  50. Yu H, Liu L, Tang Z, Yan M, Gu J, Wei X (2008) J Memb Sci 310:409

    Article  CAS  Google Scholar 

  51. Boricha AG, Murthy ZVP (2008) J Appl Polym Sci 110:3596

    Article  CAS  Google Scholar 

  52. Benhabbour RS, Sheardown H, Adronov A (2008) Macromolecules 41:4817

    Article  CAS  Google Scholar 

  53. Decher G, Hong J (1991) Ber Bunsenges Phys Chem 95:1430

    Article  CAS  Google Scholar 

  54. Decher G, Hong J (1993 ) US Patent 5208111

    Google Scholar 

  55. Rieser T (1999 ) Modifizierung von mikroporösen Polypropylen Membranen mit Polyelektrolyten und Polyelektrolytkomplexschichten, PhD-Thesis TU Dresden

    Google Scholar 

  56. Müller M, Rieser T, Linkwitz K, Berwald S, Meier-Haack J, Jehnichen D (1998) Macromol Rapid Commun 19:333

    Google Scholar 

  57. Müller M, Rieser T, Lunkwitz K, Meier-Haack J (1999) Macromol Rapid Commun 20:607

    Article  Google Scholar 

  58. Müller M, Briššova M, Rieser T, Powers AC, Lunkwitz K (1999) Mater Sci Eng C8–9:167

    Google Scholar 

  59. Müller M, Rieser T, Dubin P, Lunkwitz K (2001) Macromol Rapid Commun 22:390

    Article  Google Scholar 

  60. Müller M, Keßler B, Houbenov N, Bohata K, Pientka Z, Brynda E (2006) Biomacromolecules 7:1285

    Article  Google Scholar 

  61. Meier-Haack J, Booker NA, Carroll T (2003) Water Res 37:585

    Article  CAS  Google Scholar 

  62. Meier-Haack J, Carroll T (2003) Water Sci Technol: Water Supply 3:385

    CAS  Google Scholar 

  63. Berwald S, Lenk W, Rieser T, Meier-Haack J, Eichhorn K, Lunkwitz K (1999) Angew Makrom Chem 273:47

    Article  CAS  Google Scholar 

  64. Berwald S, Meier-Haack J (2002) Polyelectrolyte multilayer systems in membrane applications. In: Tripathy SK, Kumar J, Nalwa HS (eds) Handbook of polyelectrolytes and their applications. American Scientific Publisher, Stevenson Ranch, CA, p 99

    Google Scholar 

  65. Tieke B (2002) Polyelectrolyte multilayer membranes for materials separation. In: Tripathy SK, Kumar J, Nalwa HS (eds) Handbook of polyelectrolytes and their application. American Scientific Publisher, Stevenson Ranch, CA, p 115

    Google Scholar 

  66. Krasemann L, Tieke B (2000) Langmuir 16:287

    Article  CAS  Google Scholar 

  67. Krasemann L, Tieke B (2000) Chem Eng Technol 23:211

    Article  CAS  Google Scholar 

  68. Lenk W, Meier-Haack J (2002) Desalination 148:11

    Article  CAS  Google Scholar 

  69. von Klitzing R, Möhwald H (1995) Langmuir 11:3554

    Article  CAS  Google Scholar 

  70. Kreuer K (2001) J Memb Sci 185:29–39

    Article  CAS  Google Scholar 

  71. Zhou J, Unlu M, Vega JA, Kohl PA (2009) J Power Sources 190:285

    Article  CAS  Google Scholar 

  72. Li YS, Zhao TS, Liang ZX (2009) J Power Sources 187:387

    Article  CAS  Google Scholar 

  73. Bauer B, Strathmann H, Effenberger F (1990) Desalination 79:125

    Article  CAS  Google Scholar 

  74. Komkova EN, Stamatialis DF, Strathmann H, Wessling M (2004) J Memb Sci 244:25

    Article  CAS  Google Scholar 

  75. McLean GF, Niet T, Prince-Richard S, Djilali N (2002) Int J Hydrogen Energy 27:507

    Article  CAS  Google Scholar 

  76. Becker HGO, Beckert RDG, Fanghänel E, Habicher WD, Metz P, Pavel D, Schwetlick K (eds) (2001) Organikum, 21st edn. Wiley, Weinheim, p 361

    Google Scholar 

  77. Schuster M, Kreuer K, Thalbitzer AH, Maier J (2006 ) DE Patent 102005010411

    Google Scholar 

  78. Schuster M, Kreuer K, Andersen HT, Maier J (2007) Macromolecules 40:598

    Article  CAS  Google Scholar 

  79. Schuster M, de Araujo CC, Atanasov V, Andersen HT, Kreuer K, Maier J (2009) Macromolecules 42:3129

    Article  CAS  Google Scholar 

  80. de Araujo CC, Kreuer KD, Schuster M, Portale G, Mendil-Jakani H, Gebel G, Maier J (2009) Phys Chem Chem Phys 11:3305

    Article  Google Scholar 

  81. Rusanov AL, Kostoglodov PV, Abadie MJM, Voytekunas VY, Likhachev DY (2008) Adv Polym Sci 216:125

    CAS  Google Scholar 

  82. Meier-Haack J, Rieser T, Lenk W, Lehmann D, Berwald S, Schwarz S (2000) Chem Eng Technol 23:114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Meier-Haack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meier-Haack, J., Müller, M., Lunkwitz, K. (2009). Polymer Membranes for Sustainable Technologies. In: Eyerer, P., Weller, M., Hübner, C. (eds) Polymers - Opportunities and Risks II. The Handbook of Environmental Chemistry(), vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_17

Download citation

Publish with us

Policies and ethics