Skip to main content

Pharmaceuticals in Drinking Water

  • Chapter
  • First Online:
Emerging Organic Contaminants and Human Health

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 20))

Abstract

Pharmaceuticals are a group of emerging contaminants that has received noticeable attention over the past decade. Continual development of the advanced instruments and improved analytical methodologies made possible detection of these microcontaminants in low levels in different environmental matrices. Traces of pharmaceuticals have also been found in groundwater and surface water that are used for drinking water supply. Therefore, concern has been raised over the potential risk to human health from exposure to the pharmaceutical residues via drinking water. Still, there is no evidence that any serious risk could arise from low concentrations of pharmaceuticals found in drinking water. Anyhow, there is much more to be understood about long-term, low-level exposure to a mixture of pharmaceuticals and their metabolites. In the following chapter, we give a brief overview of the technologies commonly applied for drinking water treatment, with reference to pharmaceutical removal, and we review available literature data on the occurrence of pharmaceuticals in finished drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOP:

Advanced oxidation processes

DBP:

Disinfection by-products

DWTP:

Drinking water treatment plant

ED:

Electrodialysis

EDC:

Endocrine-disrupting compounds

GAC:

Granular activated carbon

NF:

Nanofiltration

NOM:

Natural organic matter

NSAIDs:

Nonsteroidal anti-inflammatory drugs

MF:

Microfiltration

RO:

Reverse osmosis

PAC:

Powdered activated carbon

UF:

Ultrafiltration

WWTP:

Wastewater treatment plant

References

  1. Boxall ABA (2004) European Molecular Biology Organization (EMBO) Report 5, 1110

    Google Scholar 

  2. Daughton CG (2003) Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. I. rational for and avenues toward a green pharmacy. Environ Health Perspect 111:757–774

    Article  CAS  Google Scholar 

  3. Richardson SD (2010) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 82:4742–4774

    Article  CAS  Google Scholar 

  4. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Iqbal Chaudhry MJ, Arshad M, Mahmood S, Ali A, Ahmed Khan A (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633

    Article  CAS  Google Scholar 

  5. Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68:141–150

    Article  CAS  Google Scholar 

  6. Rahman MF, Yanful EK, Jasim SY (2009) Endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) in the aquatic environment: implications for the drinking water industry and global environmental health. J Water Health 7:224–243

    Article  CAS  Google Scholar 

  7. Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755

    Article  CAS  Google Scholar 

  8. Li D, Yang M, Hu J, Ren L, Zhang Y, Li K (2008) Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environ Toxicol Chem 27:80–86

    Article  CAS  Google Scholar 

  9. Li D, Yang M, Hu J, Zhang Y, Chang H, Jin F (2008) Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res 42:307–317

    Article  CAS  Google Scholar 

  10. Ruhoya ISR, Daughton CG (2008) Beyond the medicine cabinet: an analysis of where and why medications accumulate. Environ Int 34:1157–1169

    Article  CAS  Google Scholar 

  11. Barron L, Tobin J, Paull B (2008) Multi-residue determination of pharmaceuticals in sludge and sludge enriched soils using pressurized liquid extraction, solid phase extraction and liquid chromatography with tandem mass spectrometry. J Environ Monit 10:353–361

    Article  CAS  Google Scholar 

  12. Directive (2006) 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration

    Google Scholar 

  13. Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814

    Article  CAS  Google Scholar 

  14. POSEIDON (2001–2004) Detailed report related to the overall duration. http//www.eu-poseidon.com

  15. Stackelberg PE, Gibs J, Furlong ET, Meyer MT, Zaugg SD, Lippincott RL (2007) Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci Total Environ 377:255–272

    Article  CAS  Google Scholar 

  16. Huerta-Fontela M, Galceran MT, Ventura F (2011) Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res 45:1432–1442

    Article  CAS  Google Scholar 

  17. Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39:6649–6663

    Article  CAS  Google Scholar 

  18. Adams C, Asce M, Wang Y, Loftin K, Meyer M (2002) Removal of antibiotics from surface and distilled water in conventional water treatment processes. J Environ Eng 128:253 (258pages)

    Article  CAS  Google Scholar 

  19. Vieno N, Tuhkanen T, Kronberg L (2006) Removal of pharmaceuticals in drinking water treatment: effect of chemical coagulation. Environ Technol 27:183–192

    Article  CAS  Google Scholar 

  20. Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch H-J, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863

    Article  CAS  Google Scholar 

  21. Meakins NC, Bubb JM, Lester JN (1994) Fate and behaviour of organic micropollutants during wastewater treatment processes: a review. Int J Environ Pollut 4:27–58

    CAS  Google Scholar 

  22. Snyder SA, Westerhoff P, Yoon Y, Sedlak DL (2003) Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ Eng Sci 20:449–469

    Article  CAS  Google Scholar 

  23. Snyder SA, Adham S, Redding AM, Cannon FS, DeCarolis J, Oppenheimer J, Wert EC, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202:156–181

    Article  CAS  Google Scholar 

  24. Yoon Y, Westerhoff P, Snyder SA, Esparza M (2003) HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Res 37:3530–3537

    Article  CAS  Google Scholar 

  25. Li Q, Snoeyink VL, Mariãas BJ, Campos C (2003) Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds. Water Res 37:773–784

    Article  CAS  Google Scholar 

  26. Clark RM, Lykins BW Jr (1989) Granular activated carbon: design, operation, and cost. Lewis Publishers, Chelsea, Michigan

    Google Scholar 

  27. Sontheimer H, Crittenden JC, Summers RS (1988) Activated carbon for water treatment. 2nd edn, in English. DVGW-Forschungsstelle, Karlsruhe, Germany

    Google Scholar 

  28. Heijman SGJ, Verliefde ARD, Cornelissen ER, Amy G, van Dijk JC (2007) Influence of natural organic matter (NOM) fouling on the removal of pharmaceuticals by nanofiltration and activated carbon filtration. Water Sci Technol Water Supply 7:17–23

    Article  CAS  Google Scholar 

  29. Khiari D (2007) Endocrine disruptors, pharmaceuticals, and personal care products in drinking water: an overview of AwwaRF Research to Date. Awwa Research Foundation, Denver, CO

    Google Scholar 

  30. Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013–1021

    Article  CAS  Google Scholar 

  31. Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, England

    Book  Google Scholar 

  32. Kimura K, Amy G, Drewes J, Watanabe Y (2003) Adsorption of hydrophobic compounds onto NF/RO membranes: an artifact leading to overestimation of rejection. J Membr Sci 221:89–101

    Article  CAS  Google Scholar 

  33. Kimura K, Amy G, Drewes JE, Heberer T, Kim T-U, Watanabe Y (2003) Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J Membr Sci 227:113–121

    Article  CAS  Google Scholar 

  34. Nghiem LD, Schäfer AI, Elimelech M (2004) Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms. Environ Sci Technol 38:1888–1896

    Article  CAS  Google Scholar 

  35. Nghiem LD, Schäfer AI, Elimelech M (2005) Pharmaceutical retention mechanisms by nanofiltration membranes. Environ Sci Technol 39:7698–7705

    Article  CAS  Google Scholar 

  36. Agenson KO, Oh J-I, Urase T (2003) Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: controlling parameters of process. J Membr Sci 225:91–103

    Article  CAS  Google Scholar 

  37. Yoon Y, Westerhoff P, Snyder SA, Wert EC (2006) Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J Membr Sci 270:88–100

    Article  CAS  Google Scholar 

  38. Watkinson AJ, Murby EJ, Costanzo SD (2007) Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res 41:4164–4176

    Article  CAS  Google Scholar 

  39. Urase T, Sato K (2007) The effect of deterioration of nanofiltration membrane on retention of pharmaceuticals. Desalination 202:385–391

    Article  CAS  Google Scholar 

  40. Radjenović J, Petrović M, Ventura F, Barceló D (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 42:3601–3610

    Article  CAS  Google Scholar 

  41. Snyder S, Lue-Hing C, Cotruvo J, Drewes JE, Eaton A, Pleus RC, Schlenk D (2010) Pharmaceuticals in the Water Environment, NACWA Report

    Google Scholar 

  42. Nghiem LD, Schäfer AI, Elimelech M (2006) Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J Membr Sci 286:52–59

    Article  CAS  Google Scholar 

  43. Xu P, Drewes JE, Bellona C, Amy G, Kim T-U, Adam M, Heberer T (2005) Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Water Environ Res 77:40–48

    Article  CAS  Google Scholar 

  44. Kimura K, Toshima S, Amy G, Watanabe Y (2004) Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. J Membr Sci 245:71

    Article  CAS  Google Scholar 

  45. Pinkston KE, Sedlak DL (2004) Transformation of aromatic ether- and amine-containing pharmaceuticals during chlorine disinfection. Environ Sci Technol 38:4019–4025

    Article  CAS  Google Scholar 

  46. Hollender J, Zimmermann SG, Koepke S, Krauss M, McArdell CS, Ort C, Singer H, von Gunten U, Siegrist H (2009) Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ Sci Technol 43:7862–7869

    Article  CAS  Google Scholar 

  47. von Gunten U (2003) Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res 37:1443–1467

    Article  CAS  Google Scholar 

  48. Langlais B, Reckhow DA, Brink DR (1991) Ozone in drinking water treatment: application and engineering. AWWARF and Lewis Publishers, Boca Raton, FL

    Google Scholar 

  49. Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res/Rev Mutat Res 636:178–242

    CAS  Google Scholar 

  50. Hammes F, Salhi E, Köster O, Kaiser H-P, Egli T, von Gunten U (2006) Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Water Res 40:2275–2286

    Article  CAS  Google Scholar 

  51. Huber MM, Canonica S, Park G-Y, von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37:1016–1024

    Article  CAS  Google Scholar 

  52. Huber MM, Göbel A, Joss A, Hermann N, Löffler D, McArdell CS, Ried A, Siegrist H, Ternes TA, von Gunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Technol 39:4290–4299

    Article  CAS  Google Scholar 

  53. Ternes TA, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37:1976–1982

    Article  CAS  Google Scholar 

  54. Zwiener C, Frimmel FH (2000) Oxidative treatment of pharmaceuticals in water. Water Res 34:1881–1885

    Article  CAS  Google Scholar 

  55. Wang C, Shi H, Adams CD, Gamagedara S, Stayton I, Timmons T, Ma Y (2011) Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry. Water Res 45:1818–1828

    Article  CAS  Google Scholar 

  56. Bedner M, MacCrehan WA (2005) Transformation of acetaminophen by chlorination produces the toxicants 1,4-benzoquinone and N-acetyl-p-benzoquinone imine. Environ Sci Technol 40:516–522

    Article  CAS  Google Scholar 

  57. Boyd GR, Zhang S, Grimm DA (2005) Naproxen removal from water by chlorination and biofilm processes. Water Res 39:668–676

    Article  CAS  Google Scholar 

  58. Gibs J, Stackelberg PE, Furlong ET, Meyer M, Zaugg SD, Lippincott RL (2007) Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time. Sci Total Environ 373:240–249

    Article  CAS  Google Scholar 

  59. Dodd MC, Huang C-H (2004) Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechanisms, and pathways. Environ Sci Technol 38:5607–5615

    Article  CAS  Google Scholar 

  60. Chamberlain E, Adams C (2006) Oxidation of sulfonamides, macrolides, and carbadox with free chlorine and monochloramine. Water Res 40:2517–2526

    Article  CAS  Google Scholar 

  61. Westerhoff P, Chao P, Mash H (2004) Reactivity of natural organic matter with aqueous chlorine and bromine. Water Res 38:1502–1513

    Article  CAS  Google Scholar 

  62. Broséus R, Vincent S, Aboulfadl K, Daneshvar A, Sauvé S, Barbeau B, Prévost M (2009) Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment. Water Res 43:4707–4717

    Article  CAS  Google Scholar 

  63. Snyder SA, Trenholm RA, Bruce GM, Snyder EM, Pleus RC (2008) Toxicological relevance of EDCs and pharmaceuticals in drinking water. Awwa Research Foundation, Denver, USA

    Google Scholar 

  64. Alum A, Yoon Y, Westerhoff P, Abbaszadegan M (2004) Oxidation of bisphenol A, 17beta-estradiol, and 17alpha-ethynyl estradiol and byproduct estrogenicity. Environ Toxicol 19:257–264

    Article  CAS  Google Scholar 

  65. Hu J-y, Aizawa T, Ookubo S (2002) Products of aqueous chlorination of bisphenol A and their estrogenic activity. Environ Sci Technol 36:1980–1987

    Article  CAS  Google Scholar 

  66. McDowell DC, Huber MM, Wagner M, von Gunten U, Ternes TA (2005) Ozonation of carbamazepine in drinking water: identification and kinetic study of major oxidation products. Environ Sci Technol 39:8014–8022

    Article  CAS  Google Scholar 

  67. Reungoat J, Macova M, Escher BI, Carswell S, Mueller JF, Keller J (2010) Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res 44:625–637

    Article  CAS  Google Scholar 

  68. Lange F, Cornelissen S, Kubac D, Sein MM, von Sonntag J, Hannich CB, Golloch A, Heipieper HJ, Möder M, von Sonntag C (2006) Degradation of macrolide antibiotics by ozone: a mechanistic case study with clarithromycin. Chemosphere 65:17–23

    Article  CAS  Google Scholar 

  69. Radjenovic J, Godehardt M, Petrovic M, Hein A, Farre M, Jekel M, Barcelo D (2009) Evidencing generation of persistent ozonation products of antibiotics roxithromycin and trimethoprim. Environ Sci Technol 43:6808–6815

    Article  CAS  Google Scholar 

  70. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  CAS  Google Scholar 

  71. Fatta-Kassinos D, Hapeshi E, Malato S, Mantzavinos D, Rizzo L, Xekoukoulotakis NP (2010) Removal of xenobiotic compounds from water and wastewater by advanced oxidation processes. In: Fatta-Kassinos D, Bester K, Kümmerer K (eds) Xenobiotics in the urban water cycle. Springer, Netherlands, pp 387–412

    Chapter  Google Scholar 

  72. Ince NH, Apikyan IG (2000) Combination of activated carbon adsorption with light-enhanced chemical oxidation via hydrogen peroxide. Water Res 34:4169–4176

    Article  CAS  Google Scholar 

  73. Pereira VJ, Weinberg HS, Linden KG, Singer PC (2007) UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm. Environ Sci Technol 41:1682–1688

    Article  CAS  Google Scholar 

  74. Rosenfeldt EJ, Linden KG (2004) Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ Sci Technol 38:5476–5483

    Article  CAS  Google Scholar 

  75. Andreozzi R, Caprio V, Marotta R, Radovnikovic A (2003) Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation. J Hazard Mater 103:233–246

    Article  CAS  Google Scholar 

  76. Andreozzi R, Caprio V, Marotta R, Vogna D (2003) Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Res 37:993–1004

    Article  CAS  Google Scholar 

  77. Kim I, Yamashita N, Tanaka H (2009) Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. J Hazard Mater 166:1134–1140

    Article  CAS  Google Scholar 

  78. Pereira VJ, Linden KG, Weinberg HS (2007) Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water. Water Res 41:4413–4423

    Article  CAS  Google Scholar 

  79. Vogna D, Marotta R, Andreozzi R, Napolitano A, d’Ischia M (2004) Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine. Chemosphere 54:497–505

    Article  CAS  Google Scholar 

  80. Vogna D, Marotta R, Napolitano A, Andreozzi R, d’Ischia M (2004) Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res 38:414–422

    Article  CAS  Google Scholar 

  81. Doll TE, Frimmel FH (2005) Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water. Catal Today 101:195–202

    Article  CAS  Google Scholar 

  82. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364

    Article  CAS  Google Scholar 

  83. Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB (2004) Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci Total Environ 329:99–113

    Article  CAS  Google Scholar 

  84. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43:597–603

    Article  CAS  Google Scholar 

  85. Vulliet E, Cren-Olivé C, Grenier-Loustalot M-F (2011) Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environ Chem Lett 9:103–114

    Article  CAS  Google Scholar 

  86. Loos R, Wollgast J, Huber T, Hanke G (2007) Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. Anal Bioanal Chem 387:1469–1478

    Article  CAS  Google Scholar 

  87. Stumpf M, Ternes TA, Haberer K, Seel P, Baumann W (1996) Nachweis von arzneimittelrückständen in kläranlagen und flieβgewässern. Vom Wasser 86:291–303

    CAS  Google Scholar 

  88. Heberer T, Dunnbier U, Reilich C, Stan HJ (1997) Detection of drugs and drug metabolites in ground water samples of a drinking water treatment plant. Fresenius Environ Bull 6:438–443

    CAS  Google Scholar 

  89. Heberer T, Mechlinski A, Fanck B, Knappe A, Massmann G, Pekdeger A, Fritz B (2004) Field studies on the fate and transport of pharmaceutical residues in bank filtration. Ground Water Monit Rem 24:70–77

    Article  CAS  Google Scholar 

  90. Heberer T, Stan HJ (1997) Determination of clofibric acid and N-(Phenylsulfonyl)-Sarcosine in sewage, river and drinking water. Int J Environ Anal Chem 67:113–124

    Article  CAS  Google Scholar 

  91. Stan HJ, Heberer T, Linkerhägner M (1994) Occurrence of clofibric acid in the aquatic system – is the use in human medical care the source of the contamination of surface ground and drinking water? Vom Wasser 83:57–68

    CAS  Google Scholar 

  92. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    Article  CAS  Google Scholar 

  93. Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355:1789–1790

    Article  CAS  Google Scholar 

  94. Tauber R (2003) Quantitative analysis of pharmaceuticals in drinking water from ten Canadian cities. Enviro-Test Laboratories, Xenos Division, Ontario, Canada

    Google Scholar 

  95. Togola A, Budzinski H (2008) Multi-residue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A 1177:150–158

    Article  CAS  Google Scholar 

  96. Rabiet M, Togola A, Brissaud F, Seidel J-L, Budzinski H, Elbaz-Poulichet F (2006) Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized mediterranean catchment. Environ Sci Technol 40:5282–5288

    Article  CAS  Google Scholar 

  97. Vieno NM, Tuhkanen T, Kronberg L (2005) Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environ Sci Technol 39:8220

    Article  CAS  Google Scholar 

  98. Loraine GA, Pettigrove ME (2005) Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in Southern California. Environ Sci Technol 40:687–695

    Article  CAS  Google Scholar 

  99. Reddersen K, Heberer T, Dünnbier U (2002) Identification and significance of phenazone drugs and their metabolites in ground- and drinking water. Chemosphere 49:539–544

    Article  CAS  Google Scholar 

  100. Zühlke S, Dünnbier U, Heberer T (2004) Detection and identification of phenazone-type drugs and their microbial metabolites in ground and drinking water applying solid-phase extraction and gas chromatography with mass spectrometric detection. J Chromatogr A 1050:201–209

    Google Scholar 

  101. Waggot A (1981) Trace organic substances in the River Lee (Great Britain). In: Cooper WJ (ed) Chemistry in water reuse, 1st edn. Ann Arbour Science, pp 55–99

    Google Scholar 

  102. Vanderford BJ, Snyder SA (2006) Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry†. Environ Sci Technol 40:7312–7320

    Article  CAS  Google Scholar 

  103. Jones OA, Lester JN, Voulvoulis N (2005) Pharmaceuticals: a threat to drinking water? Trends Biotechnol 23:163–167

    Article  CAS  Google Scholar 

  104. Clara M, Strenn B, Kreuzinger N (2004) Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Res 38:947–954

    Article  CAS  Google Scholar 

  105. Escher BI, Bramaz N, Richter M, Lienert J (2006) Comparative ecotoxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action-based test battery and a QSAR approach†. Environ Sci Technol 40:7402–7408

    Article  CAS  Google Scholar 

  106. Ramil M, El Aref T, Fink G, Scheurer M, Ternes TA (2009) Fate of beta blockers in aquatic-sediment systems: sorption and biotransformation. Environ Sci Technol 44:962–970

    Article  CAS  Google Scholar 

  107. Lee H-B, Sarafin K, Peart TE (2007) Determination of [beta]-blockers and [beta]2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1148:158–167

    Article  CAS  Google Scholar 

  108. Gros M, Petrovic M, Ginebreda A, Barceló D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36:15–26

    Article  CAS  Google Scholar 

  109. Heberer T, Fuhrmann B, Schmidt-Baumier K, Tsipi D, Koutsouba V, Hiskia A (2001) Occurrence of pharmaceutical residues in sewage, river, ground, and drinking water in Greece and Berlin (Germany). In: Daughton C, Jones-Lepp T (eds) Pharmaceuticals and personal care products in the environment. American Chemical Society, Washington, DC, Scientific and Regulatory Issues

    Google Scholar 

  110. Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52:5–7

    Article  CAS  Google Scholar 

  111. Huang CH, Renew JE, Smeby KL, Pinkerston K, Sedlak DL (2001) Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. Water Resour Update 120:30–40

    Google Scholar 

  112. Finnegan DP, Simonson LA, Meyer MT (2010) Occurrence of antibiotic compounds in source water and finished drinking water from the Upper Scioto River Basin, Ohio, 2005–6 (Scientific Investigations Report 2010)

    Google Scholar 

  113. Ye Z, Weinberg HS, Meyer MT (2004) Occurrence of antibiotics in drinking water. p. 138–142. In Proceedings of the 4th International Conference on Pharmaceuticals and Endocrine Disrupting Chemicals in Water (CD-ROM). 13–15 October 2004, Minneapolis, MN.

    Google Scholar 

  114. Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD (2009) The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ 407:2711–2723

    Article  CAS  Google Scholar 

  115. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  116. Kümmerer K (2001) Introduction: pharmaceuticals in the environment. In: Pharmaceuticals in the environment: sources, fate, effects and risks. Springer, Berlin, pp 1–8

    Google Scholar 

  117. Touraud E, Roig B, Sumpter JP, Coetsier C (2011) Drug residues and endocrine disruptors in drinking water: risk for humans? Int J Hyg Environ Health 214: 437–441

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Jelić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg 2011

About this chapter

Cite this chapter

Jelić, A., Petrović, M., Barceló, D. (2012). Pharmaceuticals in Drinking Water. In: Barceló, D. (eds) Emerging Organic Contaminants and Human Health. The Handbook of Environmental Chemistry(), vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2011_133

Download citation

Publish with us

Policies and ethics