Skip to main content

RedOx Layer Model: A Tool for Analysis of the Water Column Oxic/Anoxic Interface Processes

  • Chapter
  • First Online:
Chemical Structure of Pelagic Redox Interfaces

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 22))

Abstract

The goal of the elaboration of the RedOx Layer Model (ROLM) was to create an instrument for a complex analysis of the structures of the pelagic redox-interfaces in the seas with anoxic conditions. The processes of formation and decay of organic matter (OM), reduction and oxidation of species of nitrogen, sulfur, manganese and iron, and transformation of phosphorus forms were parameterized. This chapter is devoted to the detailed description of the assumptions and parameterizations of the processes considered. Examples of the ROLM application are given in other chapters of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GOTM:

General ocean turbulent model

OM:

Organic matter

ROLM:

RedOx Layer Model

References

  1. Yakushev EV, Chasovnikov VK, Murray JW, Pakhomova SV, Podymov OI, Stunzhas PA (2008) Vertical hydrochemical structure of the Black Sea. In: Kostyanoy AG, Kosarev AN (eds) The Black Sea environment. Springer, Berlin, pp 277–307

    Chapter  Google Scholar 

  2. Yakushev EV (1992) Numerical modeling of transformation of nitrogen compounds in the redox zone of the Black Sea. Oceanology 32(2):173–177

    Google Scholar 

  3. Yakushev EV, Neretin LN (1997) One-dimensional modeling of nitrogen and sulfur cycles in the aphotic zones of the Black and Arabian Seas. Global Biogeochem Cycles 11(3):401–414

    Article  CAS  Google Scholar 

  4. Yakushev EV (1998) Mathematical modelling of oxygen, nitrogen, sulfur and manganese cycling in the Black Sea. In: Ivanov L, Oguz T (eds) NATO TU-Black Sea Project. Ecosystem modeling as a tool for the Black Sea. Symposium on scientific results, vol 1. Kluwer Academic, New York, pp 373–384

    Google Scholar 

  5. Yakushev EV, Pollehne F, Jost G, Umlauf L, Kuznetsov I, Schneider B (2007) Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a redox-layer model. Mar Chem 107:388–410

    Article  CAS  Google Scholar 

  6. Yakushev E, Pakhomova S, Sørenson K, Skei J (2009) Importance of the different manganese species in the formation of water column redox zones: observations and modeling. Mar Chem 117:59–70

    Article  CAS  Google Scholar 

  7. Yakushev EV, Kuznetsov IS, Podymov OI, Burchard H, Neumann T, Pollehne F (2011) Modeling of influence of oxygenated inflows on biogeochemical structure of the Gotland Sea, central Baltic Sea: changes in distribution of manganese. Comput Geosci 37:398–409

    Article  CAS  Google Scholar 

  8. He Y, Stanev E, Yakushev E, Staneva J (2011) Numerical modeling of biogeochemical regime response to decadal atmospheric variability during 1960–2000 in the Black Sea. In: Yakushev EV (ed) Chemical structure of pelagic redox interfaces: observation and modeling, Hdb Environ Chem. Springer, Berlin. doi:10.1007/698_2011_103

    Google Scholar 

  9. Kamyshny Jr A, Yakushev EV, Jost G, Podymov OI (2010). Role of sulfide oxidation intermediates in the redox balance of the oxic–anoxic interface of the Gotland Deep, Baltic Sea. In: Yakushev EV (ed) Chemical structure of pelagic redox interfaces: observation and modeling, Hdb Environ Chem. Springer, Berlin. doi:10.1007/698_2010_83

    Google Scholar 

  10. Pakhomova SV, Yakushev EV (2011) On the role of iron and manganese species in the formation of the redox-interface structure in the Black Sea, Baltic Sea and Oslo Fjord. In: Yakushev EV (ed) Chemical structure of pelagic redox interfaces: observation and modeling, Hdb Environ Chem. Springer, Berlin. doi:10.1007/698_2011_98

    Google Scholar 

  11. Yakushev EV, Mikhailovsky GE (1995) Mathematical modelling of the influence of marine biota on the carbon dioxide ocean-atmosphere exchange in high latitudes. In: Jaehne B, Monahan EC (eds) Air-water gas transfer, selected papers from the third international symposium on air-water gas transfer, July 24–27, Heidelberg University. AEON Verlag & Studio, Hanau, pp 37–48

    Google Scholar 

  12. Fasham MJ, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Mar Res 48:591–639

    CAS  Google Scholar 

  13. Fennel W, Neumann T (2004) Introduction to the modeling of marine ecosystems. In: Halpne D (ed) Oceanography, vol 72. Elsevier, Devon, p 298

    Google Scholar 

  14. Ayzatulllin TA, Leonov AV (1975) Kinetics and mechanism of the oxidizing transformation of anoxic sulfur compounds in the sea water. Okeanologiya 15(6):1026–1033 (in Russian)

    Google Scholar 

  15. Savchuk O, Wulff F (1996) Biogeochemical transformation of nitrogen and phosphorus in the marine environment. Coupling hydrodynamic and biogeochemical processes in models for the Baltic proper. Systems ecology contributions, vol 2. Stockholm University, Stockholm

    Google Scholar 

  16. Boudreau BP (1996) A method-of lines code for carbon and nutrient digenesis in aquatic sediments. Comput Geosci 22(5):479–496

    Article  CAS  Google Scholar 

  17. Oguz T, Ducklow H, Shushkina EA, Malonotte-Rizzoli P, Tugrul S, Lebedeva LP (1998) Simulation of upper layer biochemical structure in the Black Sea. In: Ivanov L, Oguz T (eds) NATO TU-Black Sea Project. Ecosystem modeling as a tool for the Black Sea. Symp. on Sci. Res., vol 2. Kluwer Academic, Norwell, pp 257–299

    Google Scholar 

  18. Gregoire M, Beckers J-M, Nihoul JCJ, Stanev E (1997) Coupled hydrodynamic ecosystem model of the Black Sea at basin scale. In: Ozsoy E, Mikaelyan A (eds) Sensitivity to change: Black Sea, Baltic Sea and North Sea. NATO Science Partnership Subseries: 2, vol 7, Kluwer Academic Publishers, The Netherlands, pp 487–499

    Chapter  Google Scholar 

  19. Konovalov SK, Murray JW, Luther GW, Tebo BM (2006) Processes controlling the redox budget for oxic/anoxic water column of the Black Sea. Deep Sea Res (II) 53:1817–1841

    Article  Google Scholar 

  20. Canfield DE, Thamdrup B, Kristensen E (2005) Aquatic geomicrobiology. In: Southward AJ, Tyler PA, Young CM, Fuiman LA (eds) Advances in marine biology, vol 48. Elsevier Academic, Amsterdam, p 640

    Google Scholar 

  21. Skopintsev BA (1975) Forming of the modern chemical composition of water in the Black Sea. Hydrometizdat, Leningrad (in Russian)

    Google Scholar 

  22. Redfield AC (1934) On the proportion of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial Volume University Press, Liverpool, pp 176–192

    Google Scholar 

  23. Richards FA (1965) Anoxic basins and fjords. In: Riley JP, Skirrow G (eds) Chemical oceanography, vol 1. Academic, New York, pp 611–645

    Google Scholar 

  24. Ward BB, Kilpatrick KA (1991) Nitrogen transformations in the oxic layer of permanent anoxic basins: the Black Sea and the Cariaco Trench. In: Izdar E, Murray JW (eds) Black Sea oceanography. Kluwer Academic, Norwell, pp 111–124

    Chapter  Google Scholar 

  25. Thamdrup B (2000) Bacterial manganese and iron reduction in aquatic sediments. In: Schrink B (ed) Advances in microbial ecology, vol 16. Plenum, New York, pp 41–84

    Chapter  Google Scholar 

  26. Anderson JJ, Okubo A, Robbins AS, Richards FA (1982) A model for nitrite and nitrate distributions in oceanic oxygen minimum zones. Deep-Sea Res 29:1113–1140

    Article  CAS  Google Scholar 

  27. Zopfi J, Ferdelman TG, Jorgensen BB, Teske A, Thamdrup B (2001) Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Mar Chem 74:29–51

    Article  CAS  Google Scholar 

  28. Lipschultz F, Wofsy SC, Ward BB, Codispoti LA, Friederich G, Elkins JW (1990) Bacterial transformations of inorganic nitrogen in the oxygen-deficient waters of the eastern tropical South Pacific Ocean. Deep Sea Res 37:1513–1541

    Article  CAS  Google Scholar 

  29. Jost G, Pollehne F (2011) The energetic balance of microbial exploitation of pelagic redox gradients. In: Yakushev EV (ed) Chemical structure of pelagic redox interfaces: observation and modeling, Hdb Environ Chem. Springer, Berlin. doi:10.1007/698_2011_104

    Google Scholar 

  30. Rönner U, Sörensson F (1985) Denitrification rates in the low-oxygen waters of the stratified Baltic proper. Appl Environ Microbiol 50:801–806

    Google Scholar 

  31. Cline JD, Richards FA (1972) Oxygen deficient conditions and nitrate reduction in the eastern tropical North Pacific Ocean. Limnol Oceanogr 17:885–900

    Article  CAS  Google Scholar 

  32. Devol AH (1978) Bacterial oxygen uptake kinetics as related to biological processes in oxygen deficient zones of the oceans. Deep-Sea Res 25:137–146

    Article  Google Scholar 

  33. Jørgensen BB, Fossing H, Wirsen CO et al (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep-Sea Res 38:S1083–S1103

    Article  Google Scholar 

  34. Albert DB, Taylor C, Martens CS (1995) Sulfate reduction rates and low molecular weight fatty acid concentrations in the water column and surficial sediments of the Black Sea. Deep-Sea Res I 42:1239–1260

    Article  CAS  Google Scholar 

  35. Hastings D, Emerson S (1988) Sulfate reduction in the presence of low oxygen levels in the water column of the Cariaco Trench. Limnol Oceanogr 33:391–396

    Article  CAS  Google Scholar 

  36. Brettar I, Moore ERB, Höfle MG (2001) Phylogeny and abundance of novel denitrifying bacteria isolated from the water column of the central Baltic Sea. Microb Ecol 42:295–305

    Article  CAS  Google Scholar 

  37. Labrenz M, Jost G, Jürgens K (2007) Distribution of abundant prokaryotic organisms in the water column of the central Baltic Sea with an oxic-anoxic interface. Aquat Microb Ecol 46:177–190

    Article  Google Scholar 

  38. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Sinnenghe Damste JS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611

    Article  CAS  Google Scholar 

  39. Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuna-Gonzalez J (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606–608

    Article  CAS  Google Scholar 

  40. Hannig M, Lavik G, Kuypers MMM et al (2007) Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnol Oceanogr 52:1336–1345

    Article  CAS  Google Scholar 

  41. Murray JW, Yakushev EV (2006) The suboxic transition zone in the Black Sea. In: Neretin LN (ed) Past and present water column anoxia. NATO Sciences Series. Springer, Dordrecht, p 105

    Chapter  Google Scholar 

  42. Jetten MSM, Strous M, van de Pas-Schoonen KT et al (1999) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437

    Article  Google Scholar 

  43. Jensen MM, Kuypers MMM, Lavik G et al (2008) Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnol Oceanogr 53:23–36

    Article  CAS  Google Scholar 

  44. Volkov II (1974) Geokhimiya sery v osadkah okeana (Geochemistry of sulfur in the ocean sediments). Nauka, Moscow, p 272 (in Russian)

    Google Scholar 

  45. Kostka JE, Luther GW III, Nealson KH (1995) Chemical and biological reduction of Mn(III)-pyrophosphate complexes: potential importance of dissolved Mn(III) as an environmental oxidant. Geochim Cosmochim Acta 59:885–894

    CAS  Google Scholar 

  46. Webb SM, Dick GJ, Bargar JR, Tebo BM (2005) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Proc Natl Acad Sci USA 102:5558–5563

    Article  CAS  Google Scholar 

  47. Caspi R, Haygood MG, Tebo BM (1996) Unusual ribulose-1,5-bisphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium. Microbiology 142:2549–2559

    Article  CAS  Google Scholar 

  48. Tebo BM (1991) Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep-Sea Res II 38:S883–S905

    Article  Google Scholar 

  49. Neretin LN, Pohl C, Jost G et al (2003) Manganese cycling in the Gotland Deep, Baltic Sea. Mar Chem 82:125–143

    Article  CAS  Google Scholar 

  50. Richardson LL, Aguilar C, Nealson KH (1988) Manganeses oxidation in pH and O2 microenvironments produced by phytoplankton. Limnol Oceanogr 33(3):352–363

    Article  CAS  Google Scholar 

  51. Yao W, Millero F (1996) Adsorption of Phosphate on Manganese Dioxide in Seawater. Environ Sci Technol 30:536–541

    Article  CAS  Google Scholar 

  52. Nealson KH, Myers CR, Wimpee BB (1991) Isolation and identification of manganese reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea. Deep-Sea Res (II) 38:907–920

    Article  Google Scholar 

  53. Dollhopf ME, Nealson KH, Simon DM, Luther GW III (2000) Kinetics of Fe(III) and Mn(IV) reduction by the Black Sea strain of Shewanella Putrefaciens using in situ solid state voltammetric AU/Hg electrodes. Mar Chem 70:171–180

    Article  CAS  Google Scholar 

  54. Trouwborst RE, Brian GC, Tebo BM, Glazer BT, Luther GW III (2006) Soluble Mn(III) in suboxic zones. Science 313:1955–1957

    Article  CAS  Google Scholar 

  55. Ali K, Ashiq U (2004) Study of the kinetics and activation parameters of reduction of Mn(III) to Mn(II) by SO 2−3 ion in (MnSiW11O40H2)5-heteropoly ion. J Iran Chem Soc 1:122–127

    Article  CAS  Google Scholar 

  56. Nealson KN, Stahl DA (1997) Microorganisms and biogeochemical cycles: what can be learn from layered microbial communities? In: Banfield JF, Nealson KN (eds) Geomicrobiology: interactions between microbes and minerals, reviews in mineralogy, vol 35. Mineralogical Society of America, Washington, pp 5–34

    Google Scholar 

  57. Savenko AV (1995) Precipitation of phosphate with iron hydroxide forming by mixing of submarine hydrothermal solutions and the sea water (on the base of experimental data). Geochem Int 9:1383–1389

    Google Scholar 

  58. Savenko AV, Baturin GN (1996) Experimental study of the sorption of phosphorus on manganese dioxide. Geochem Int 5:472–474

    Google Scholar 

  59. Sergeev YN (ed) (1979) Modelirovaniye Perenosa i Transformatsii Veshchestv v More (Modeling of transport and transformation of substances in the sea). Leningrad State Univ., St. Petersburg, Russia, p 296 (in Russian)

    Google Scholar 

  60. Steele JH, Frost BW (1977) The structure of plankton communities. Phil Trans R Soc A 280:485–534

    Article  Google Scholar 

  61. Zubkov MV, Sazhin AF, Flint MV (1992) The microplankton organisms at the oxic-anoxic interface in the pelagial of the Black Sea. FEMS Microbiol Ecol 101:245–250

    Google Scholar 

  62. Anderson R, Weber F, Wylezich C et al (2011) Protist diversity, distribution and bacterivory in Baltic Sea pelagic redoxclines. In: ASLO 2011 aquatic sciences meeting, San Juan, Puerto Rico

    Google Scholar 

  63. Detmer AE, Giesenhagen HC, Trenkel VM et al (1993) Phototrophic and heterotrophic pico- and nanoplankton in anoxic depths of the central Baltic Sea. Mar Ecol Prog Ser 99:197–203

    Article  Google Scholar 

  64. Moiseev EV, Mamaeva NV (1979) Protozoa of the upper layer of the hydrogen sulphide zone in the Black Sea. Rep Acad Sci USSR 248(2):506–508

    Google Scholar 

  65. Stoek T, Taylor GT, Epstein SS (2003) Novel eukaryotes from the permanently anoxic Cariaco basin (Caribbean Sea). Appl Environ Microbiol:5656–5663

    Google Scholar 

  66. Fenchel T, Kristensen LD, Rasmussen L (1990) Water column anoxia: vertical zonation of planktonic protozoa. Mar Ecol Prog Ser 62:1–10

    Article  Google Scholar 

  67. Weinbauer MG, Brettar I, Höfle MG (2003) Lysogeny and virus-induced mortality of bacterio-plankton in surface, deep, and anoxic marine waters. Limnol Oceanogr 48:1457–1465

    Article  Google Scholar 

  68. Ward BB (2008) Nitrification in marine systems. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment. Academic, Amsterdam, pp 199–261

    Chapter  Google Scholar 

  69. Jost G, Martens-Habbena W, Pollehne F et al (2010) Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea. FEMS Microbiol Ecol 71:226–236

    Article  CAS  Google Scholar 

  70. Wuchter C, Schouten S, Boschker HTS et al (2003) Bicarbonate uptake by marine Crenarchaeota. FEMS Microbiol Lett 219:203–207

    Article  CAS  Google Scholar 

  71. Lam P, Jensen MM, Lavik G et al (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci USA 104:7104–7109

    Article  CAS  Google Scholar 

  72. Enrich-Prast A, Bastviken D, Crill P (2009) Chemosynthesis. In: Likens GE (ed) Encyclopedia of inland waters. Academic, Oxford

    Google Scholar 

  73. Taylor GT, Iabichella M, Ho T-Y et al (2001) Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr 46:148–163

    Article  CAS  Google Scholar 

  74. Burchard H, Bolding K, Kuhn W, Meister A, Neumann T, Umlauf L (2006) Description of flexible and extendable physical-biogeochemical model system for the water column. J Mar Syst 61:180–211

    Article  Google Scholar 

  75. Yakushev EV, Debolskaya EI (2000) Particulate manganese as a main factor of oxidation of hydrogen sulfide in redox zone of the Black Sea. In: Oceanic fronts and related phenomena. Konstantin Fedorov Memorial symposium, Pushkin, Saint-Petersburg, Russia, 18–22 May 1998. Proceedings. IOC Workshop Report No. 159. Kluwer Academic, New York, pp 592–597

    Google Scholar 

  76. Shaffer G (1986) Phosphate pumps and shuttles in the Black Sea. Nature 321:515–517

    Article  CAS  Google Scholar 

  77. Kuypers MM, Blokker P, Erbacher J et al. (2001) Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science 293:92–95

    Article  CAS  Google Scholar 

  78. Kuypers MMM, Lavik G, Woebken D et al. (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA 102:6478–6483

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The chapter was supported by project HYPOX 557 (No. EC Grant 226213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Yakushev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yakushev, E.V. (2012). RedOx Layer Model: A Tool for Analysis of the Water Column Oxic/Anoxic Interface Processes. In: Yakushev, E. (eds) Chemical Structure of Pelagic Redox Interfaces. The Handbook of Environmental Chemistry, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2012_145

Download citation

Publish with us

Policies and ethics