Skip to main content

Flow-Assisted Synthesis of Heterocycles via Multicomponent Reactions

  • Chapter
  • First Online:
Flow Chemistry for the Synthesis of Heterocycles

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 56))

Abstract

Multicomponent reactions (MCRs) are of great significance in organic synthesis. They often decrease the number of synthesis steps since three or more reactants are incorporated in the product in a single step. This increases the number of combinatorial options and allows more efficient processes in less time. The pharmaceutical industry is therefore very fond of MCRs for the construction of libraries. As a consequence, the field is being investigated intensely for the enhancement of chemical processes and the discovery of new types of MCRs.

The combination of the benefits of flow technology and MCRs for heterocycle synthesis is an interesting and specialized field. This chapter serves as an overview of the literature covering this topic starting from 2010, up to when the literature on this matter is reviewed in a book chapter in this book series by Cukalovic et al. (Top Heterocycl Chem 23:161–198, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-MeTHF:

2-Methyltetrahydrofuran

AcOH:

Acetic acid

Boc:

tert-Butoxycarbonyl

BPR:

Back-pressure regulator

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCM:

Dichloromethane

DIPEA:

N,N-Diisopropylethylamine

DMA:

N,N-Dimethylacetamide

DMAP:

4-Dimethylaminopyridine

DME:

1,2-Dimethoxyethane

DMF:

N,N-Dimethylformamide

EDC:

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

eq:

Equivalents

Et2O:

Diethyl ether

Et3N:

Triethylamine

EtOAc:

Ethyl acetate

EtOH:

Ethanol

HOBt:

1-Hydroxybenzotriazole

kHz:

Kilohertz

M:

Molar

MCR:

Multicomponent reaction

MeCN:

Acetonitrile

MeOH:

Methanol

MW:

Microwave

PEG200:

Polyethylene glycol 200

PEG300:

Polyethylene glycol 300

PFA:

Perfluoroalkoxy alkane

psi:

Pound-force per square inch

PTFE:

Polytetrafluoroethylene (Telfon®)

t-BuONO:

tert-Butyl nitrite

TMSN3 :

Trimethylsilyl azide

References

  1. Cukalovic A, Monbaliu J-CMR, Stevens CV (2010) Microreactor technology as an efficient tool for multicomponent reactions. Top Heterocycl Chem 23:161–198

    CAS  Google Scholar 

  2. Hantzsch A, Weber JH (1887) Ueber Verbindungen des Thiazols (Pyridins der Thiophenreihe). Ber Dtsch Chem Ges 20(2):3118–3132

    Article  Google Scholar 

  3. Hantzsch A (1890) Ueber das sogenannte Cyanaceton. Ber Dtsch Chem Ges 23(1):1472–1474

    Article  Google Scholar 

  4. Ugi I (1962) The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew Chem Int Ed 1(1):8–21

    Article  Google Scholar 

  5. Mannich C, Krösche W (1912) Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch Pharm 250(1):647–667

    Article  CAS  Google Scholar 

  6. Strecker A (1850) Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Ann Chem 75(1):27–45

    Article  Google Scholar 

  7. Biginelli P (1893) Aldehyde-urea derivatives of aceto-and oxaloacetic acids. Gazz Chim Ital 23:360–413

    Google Scholar 

  8. Cioc RC, Ruijter E, Orru RVA (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16(6):2958–2975

    Article  CAS  Google Scholar 

  9. Bienayme H, Hulme C, Oddon G, Schmitt P (2000) Maximizing synthetic efficiency: multi-component transformations lead the way. Chem Eur J 6(18):3321–3329

    Article  CAS  PubMed  Google Scholar 

  10. Syamala M (2009) Recent progress in three-component reactions. An update. Org Prep Proced Int 41(1):1–68

    Article  CAS  Google Scholar 

  11. Herath A, Cosford NDP (2010) One-step continuous flow synthesis of highly substituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tert-butyl esters. Org Lett 12(22):5182–5185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Debus H (1858) Ueber die Einwirkung des Ammoniaks auf Glyoxal. Justus Liebigs Ann Chem 107(2):199–208

    Article  Google Scholar 

  13. Radzisewski B (1882) Ueber Glyoxalin und seine Homologe. Ber Dtsch Chem Ges 15(2):2706–2708

    Article  Google Scholar 

  14. Kong LJ, Lv XM, Lin Q, Liu XF, Zhou YM, Jia Y (2010) Efficient synthesis of imidazoles from aldehydes and 1,2-diketones under superheating conditions by using a continuous flow microreactor system under pressure. Org Process Res Dev 14(4):902–904

    Article  CAS  Google Scholar 

  15. Zimmermann J, Ondruschka B, Stark A (2010) Efficient synthesis of 1,3-dialkylimidazolium-based ionic liquids: the modified continuous Radziszewski reaction in a microreactor setup. Org Process Res Dev 14(5):1102–1109

    Article  CAS  Google Scholar 

  16. Maton C, De Vos N, Roman BI, Vanecht E, Brooks NR, Binnemans K, Schaltin S, Fransaer J, Stevens CV (2012) Continuous synthesis of peralkylated imidazoles and their transformation into ionic liquids with improved (electro)chemical stabilities. ChemPhysChem 13(13):3146–3157

    Article  CAS  PubMed  Google Scholar 

  17. Carneiro PF, Gutmann B, de Souza ROMA, Kappe CO (2015) Process intensified flow synthesis of 1H-4-substituted imidazoles: toward the continuous production of daclatasvir. ACS Sustain Chem Eng 3(12):3445–3453

    Article  CAS  Google Scholar 

  18. Breen JR, Sandford G, Yufit DS, Howard JAK, Fray J, Patel B (2011) Continuous gas/liquid-liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination. Beilstein J Org Chem 7:1048–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poh JS, Browne DL, Ley SV (2016) A multistep continuous flow synthesis machine for the preparation of pyrazoles via a metal-free amine-redox process. React Chem Eng 1(1):101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pagano N, Heil ML, Cosford NDP (2012) Automated multistep continuous flow synthesis of 2-(1H-indol-3-yl)thiazole derivatives. Synthesis 44(16):2537–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fischer E, Jourdan F (1883) Ueber die Hydrazine der Brenztraubensäure. Ber Dtsch Chem Ges 16(2):2241–2245

    Article  Google Scholar 

  22. Fischer E, Hess O (1884) Synthese von Indolderivaten. Ber Dtsch Chem Ges 17(1):559–568

    Article  Google Scholar 

  23. Noël T, Hessel V (2013) Membrane microreactors: gas–liquid reactions made easy. Chemsuschem 6(3):405–407

    Article  CAS  PubMed  Google Scholar 

  24. Polyzos A, O’Brien M, Petersen TP, Baxendale IR, Ley SV (2011) The continuous-flow synthesis of carboxylic acids using CO2 in a tube-in-tube gas permeable membrane reactor. Angew Chem Int Ed 50(5):1190–1193

    Article  CAS  Google Scholar 

  25. Pastre JC, Browne DL, O’Brien M, Ley SV (2013) Scaling up of continuous flow processes with gases using a tube-in-tube reactor: inline titrations and fanetizole synthesis with ammonia. Org Process Res Dev 17(9):1183–1191

    Article  CAS  Google Scholar 

  26. Groebke K, Weber L, Mehlin F (1998) Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett 1998(6):661–663

    Article  Google Scholar 

  27. Blackburn C, Guan B, Fleming P, Shiosaki K, Tsai S (1998) Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett 39(22):3635–3638

    Article  CAS  Google Scholar 

  28. Bienaymé H, Bouzid K (1998) A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew Chem Int Ed 37(16):2234–2237

    Article  Google Scholar 

  29. Butler AJE, Thompson MJ, Maydom PJ, Newby JA, Guo K, Adams H, Chen BN (2014) Regioselective synthesis of 3-aminoimidazo 1,2-a-pyrimidines under continuous flow conditions. J Org Chem 79(21):10196–10202

    Article  CAS  PubMed  Google Scholar 

  30. Ware E (1950) The chemistry of the hydantoins. Chem Rev 46(3):403–470

    Article  CAS  PubMed  Google Scholar 

  31. Monteiro JL, Pieber B, Corea AG, Kappe CO (2016) Continuous synthesis of hydantoins: intensifying the Bucherer-Bergs reaction. Synlett 27(1):83–87

    CAS  Google Scholar 

  32. Huisgen R (1963) 1,3-dipolar cycloadditions. Past and future. Angew Chem Int Ed 2(10):565–598

    Article  Google Scholar 

  33. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599

    Article  CAS  Google Scholar 

  34. Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: 1,2,3-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064

    Article  CAS  PubMed  Google Scholar 

  35. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    Article  CAS  Google Scholar 

  36. Bogdan AR, Sach NW (2009) The use of copper flow reactor technology for the continuous synthesis of 1,4-disubstituted 1,2,3-triazoles. Adv Synth Catal 351(6):849–854

    Article  CAS  Google Scholar 

  37. Ceylan S, Klande T, Vogt C, Friese C, Kirschning A (2010) Chemical synthesis with inductively heated copper flow reactors. Synlett (13):2009–2013

    Google Scholar 

  38. Teci M, Tilley M, McGuire MA, Organ MG (2016) Handling hazards using continuous flow chemistry: synthesis of N1-aryl-[1,2,3]-triazoles from anilines via telescoped three-step diazotization, azidodediazotization, and [3 + 2] dipolar cycloaddition processes. Org Process Res Dev 20(11):1967–1973

    Article  CAS  Google Scholar 

  39. Zhang P, Russell MG, Jamison TF (2014) Continuous flow total synthesis of rufinamide. Org Process Res Dev 18(11):1567–1570

    Article  CAS  Google Scholar 

  40. Stazi F, Cancogni D, Turco L, Westerduin P, Bacchi S (2010) Highly efficient and safe procedure for the synthesis of aryl 1,2,3-triazoles from aromatic amine in a continuous flow reactor. Tetrahedron Lett 51(41):5385–5387

    Article  CAS  Google Scholar 

  41. Baumann M, Garcia AMR, Baxendale IR (2015) Flow synthesis of ethyl isocyanoacetate enabling the telescoped synthesis of 1,2,4-triazoles and pyrrolo-[1,2-c] pyrimidines. Org Biomol Chem 13(14):4231–4239

    Article  CAS  PubMed  Google Scholar 

  42. Matsumoto K, Suzuki M (2001) Ethyl isocyanoacetate. Encyclopedia of reagents for organic synthesis. Wiley, Hoboken

    Google Scholar 

  43. Herath A, Cosford NDP (2017) Continuous-flow synthesis of highly functionalized imidazo-oxadiazoles facilitated by microfluidic extraction. Beilstein J Org Chem 13:239–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grant D, Dahl R, Cosford ND (2008) Rapid multistep synthesis of 1,2,4-oxadiazoles in a single continuous microreactor sequence. J Org Chem 73(18):7219–7223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lau SH, Galvan A, Merchant RR, Battilocchio C, Souto JA, Berry MB, Ley SV (2015) Machines vs malaria: a flow-based preparation of the drug candidate OZ439. Org Lett 17(13):3218–3221

    Article  CAS  PubMed  Google Scholar 

  46. Barnett DS, Guy RK (2014) Antimalarials in development in 2014. Chem Rev 114(22):11221–11241

    Article  CAS  PubMed  Google Scholar 

  47. Griesbaum K, Liu XJ, Kassiaris A, Scherer M (1997) Ozonolyses of O-alkylated ketoximes in the presence of carbonyl groups: a facile access to ozonides. Liebigs Ann Recl (7):1381–1390

    Article  Google Scholar 

  48. Ceylan S, Coutable L, Wegner J, Kirschning A (2011) Inductive heating with magnetic materials inside flow reactors. Chem Eur J 17(6):1884–1893

    Article  CAS  PubMed  Google Scholar 

  49. Devine WG, Leadbeater NE (2011) Probing the energy efficiency of microwave heating and continuous-flow conventional heating as tools for organic chemistry. Arkivoc:127–143

    Google Scholar 

  50. Bagley MC, Fusillo V, Jenkins RL, Lubinu MC, Mason C (2013) One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor. Beilstein J Org Chem 9:1957–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vaddula BR, Yalla S, Gonzalez MA (2015) An efficient and more sustainable one-step continuous-flow multicomponent synthesis approach to chromene derivatives. J Flow Chem 5(3):172–177

    Article  CAS  Google Scholar 

  52. Cerra B, Mostarda S, Custodi C, Macchiarulo A, Gioiello A (2016) Integrating multicomponent flow synthesis and computational approaches for the generation of a tetrahydroquinoline compound based library. MedChemComm 7(3):439–446

    Article  CAS  Google Scholar 

  53. Pagano N, Herath A, Cosford NDP (2011) An automated process for a sequential heterocycle/multicomponent reaction: multistep continuous flow synthesis of 5-(thiazol-2-yl)-3,4-dihydropyrimidin-2(1H)-ones. J Flow Chem 1(1):28–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen XH, Xu XY, Liu H, Cun LF, Gong LZ (2006) Highly enantioselective organocatalytic Biginelli reaction. J Am Chem Soc 128(46):14802–14803

    Article  CAS  PubMed  Google Scholar 

  55. Kim J, Cechetto J, No Z, Christophe T, Kim T, Nam JY, So W, Jo M, Ok T, Park C (2011) Anti viral compounds. WO 2010 046780

    Google Scholar 

  56. Pagano N, Teriete P, Mattmann ME, Yang L, Snyder BA, Cai Z, Heil ML, Cosford NDP (2017) An integrated chemical biology approach reveals the mechanism of action of HIV replication inhibitors. Bioorg Med Chem 25(23):6248–6265

    Article  CAS  PubMed  Google Scholar 

  57. Silva GCO, Correa JR, Rodrigues MO, Alvim HGO, Guido BC, Gatto CC, Wanderley KA, Fioramonte M, Gozzo FC, de Souza ROMA, Neto BAD (2015) The Biginelli reaction under batch and continuous flow conditions: catalysis, mechanism and antitumoral activity. RSC Adv 5(60):48506–48515

    Article  CAS  Google Scholar 

  58. Lei M, Tian W, Hu R, Li W, Zhang H (2012) An efficient synthesis of 2-(trifluoromethyl)-2H- 1,3 oxazino 2,3-a isoquinolines via a three-component cascade approach using a continuous-flow microreactor. Synthesis 44(16):2519–2526

    Article  CAS  Google Scholar 

  59. Engen K, Savmarker J, Rosenstrom U, Wannberg J, Lundback T, Jenmalm-Jensen A, Larhed M (2014) Microwave heated flow synthesis of spiro-oxindole dihydroquinazolinone based IRAP inhibitors. Org Process Res Dev 18(11):1582–1588

    Article  CAS  Google Scholar 

  60. He Z, Bae M, Wu J, Jamison TF (2014) Synthesis of highly functionalized polycyclic quinoxaline derivatives using visible-light photoredox catalysis. Angew Chem Int Ed 53(52):14451–14455

    Article  CAS  Google Scholar 

  61. Filipponi P, Gioiello A, Baxendale IR (2016) Controlled flow precipitation as a valuable tool for synthesis. Org Process Res Dev 20(2):371–375

    Article  CAS  Google Scholar 

  62. Salvador CEM, Pieber B, Neu PM, Torvisco A, Andrade CKZ, Kappe CO (2015) A sequential Ugi multicomponent/Cu-catalyzed azide-alkyne cycloaddition approach for the continuous flow generation of cyclic peptoids. J Org Chem 80(9):4590–4602

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim M. De Borggraeve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Mileghem, S., Veryser, C., De Borggraeve, W.M. (2018). Flow-Assisted Synthesis of Heterocycles via Multicomponent Reactions. In: Sharma, U., Van der Eycken, E. (eds) Flow Chemistry for the Synthesis of Heterocycles. Topics in Heterocyclic Chemistry, vol 56. Springer, Cham. https://doi.org/10.1007/7081_2018_23

Download citation

Publish with us

Policies and ethics