Skip to main content

Participation of the Plant ER in Peroxisomal Biogenesis

  • Chapter
  • First Online:
The Plant Endoplasmic Reticulum

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 4))

Abstract

Diverse and compelling evidence is presented in support of the participation of the ER in the biogenesisof different kinds of plant peroxisomes. New and previous data coupled with interpretations and opinionsare embedded within four multistep peroxisome assembly models derived from studies with diverse organisms.The main objective of this Chapter is to compare and contrast the varied involvement of the ER in the biogenesisof peroxisomes within the context of the four general models for peroxisome origination, assembly, maturation,and replication. Two of the models depict a unique participation of the ER in the origin and subsequentmaturation of nascent pre-peroxisomes. In the third autonomousmodel, the ER is not involved, whereas in the fourth semi-autonomousmodel, ER-derived vesicles contribute to the maturation/differentiation and replication of Pre-existingperoxisome. The semi-autonomous model pertains to the biogenesis of plant peroxisomes. Withinthis scheme, a subset of peroxisomal membrane proteins (PMPs), collectively called group I proteins,e.g. peroxin 16 and ascorbate peroxidase, are synthesized in the cytosol and trafficked indirectlyto peroxisomes via ER-derived vesicles. Interestingly, current evidence does not predict the origin ofnew plant peroxisomes directly from domains of the ER. Instead, mature pre-existing peroxisomes apparentlyreplicate via constitutive duplication (fission) in response to the action of one or more isoforms of a peroxinhomolog designated as peroxin 11. Nascent daughter organelles acquire membrane phospholipids and PMPs fromER-derived vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baerends RJS, Faber KN, Kram AM, Kiel JAKW, van der Klei IJ, Veenhuis M (2000) A stretch of positively charged amino acids at the N terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal matrix. Biol Chem 275:9986–9995

    Article  CAS  Google Scholar 

  2. Baker A (1996) Biogenesis of plant peroxisomes. Membranes: Specialized Functions in Plants. In: Smallwood M, Knox JP, Bowles DJ (eds) Bios Scientific, Oxford, UK, p 421–440

    Google Scholar 

  3. Baker A, Graham IA (2002) Plant peroxisomes: biochemistry, cell biology and biotechnological applications. Kluwer Academic, Netherlands

    Google Scholar 

  4. Baker A, Sparkes IA (2005) Peroxisome protein import: some answers, more questions. Curr Opin Plant Biol 8:1–8

    Article  Google Scholar 

  5. Bodnar AG, Rachubinski RA (1991) Characterization of the integral membrane polypeptides of rat-liver peroxisomes isolated from untreated and clofibrate-treated rats. Biochem Cell Biol 69:499–508

    Article  PubMed  CAS  Google Scholar 

  6. Brickner DG, Harada JJ, Olsen LJ (1997) Protein transport into higher plant peroxisomes—In vitro import assay provides evidence for receptor involvement. Plant Physiol 113:1213–1221

    Article  PubMed  CAS  Google Scholar 

  7. Chapman KD, Trelease RN (1991) Acquisition of membrane lipids by differentiating glyoxysomes: Role of lipid bodies. J Cell Biol 115:995–1007

    Article  PubMed  CAS  Google Scholar 

  8. Charlton W, López-Huertas E (2002) PEX genes in plants and other organisms. In: Baker A, Graham IA (eds) Plant Peroxisomes. Kluwer Academic, Netherlands, pp. 385–426

    Google Scholar 

  9. Choinski JS, Trelease RN (1978) Control of enzyme activities in cotton cotyledons during maturation and germination. II. Glyoxysomal enzyme development in embryos. Plant Physiol 62:141–145

    Article  PubMed  CAS  Google Scholar 

  10. Collings DA, Harper JDI, Marc J, Overall RL, Mullen RT (2002) Life in the fast lane: Actin-based motility of plant peroxisomes. Can J Bot 80:430–441

    Article  CAS  Google Scholar 

  11. Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JAKW, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei IJ, van Veldhoven PP, Veenhuis M (1996) Unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135:1–3

    Article  PubMed  CAS  Google Scholar 

  12. Eckert JH, Erdmann R (2003) Peroxisome biogenesis. Rev Physiol Bioch P 147:75–121

    Article  CAS  Google Scholar 

  13. Elgersma Y, Kwast L, van den Berg M, Snyder WB, Distel B, Subramani S, Tabak HF (1997) Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S. cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO J 16:7326–7341

    Article  PubMed  CAS  Google Scholar 

  14. Erdmann R, Schliebs W (2005) Peroxisomal matrix protein import: The transient pore model. Nat Rev Mol Cell Biol 6:738–742

    Article  PubMed  CAS  Google Scholar 

  15. Faber KN, Heyman JA, Subramani S (1998) Two AAA family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol Cell Biol 18:936–943

    PubMed  CAS  Google Scholar 

  16. Flynn CR, Heinze M, Schumann U, Gietl C, Trelease RN (2005) Compartmentalization of the plant peroxin, AtPex10p, within subdomain(s) of ER. Plant Sci 168:635–652

    Article  CAS  Google Scholar 

  17. Frederick SE, Newcomb EH, Vigil EL, Wergin WP (1968) Fine-structure characterization of plant microbodies. Planta 81:229–252

    Article  Google Scholar 

  18. Geuze HJ, Murk JL, Stroobants AK, Griffith JM, Kleijmeer MJ, Koster AJ, Verkleij AJ, Distel B, Tabak HF (2003) Involvement of the endoplasmic reticulum in peroxisome formation. Mol Biol Cell 14:2900–2907

    Article  PubMed  CAS  Google Scholar 

  19. Gruber PJ, Becker WM, Newcomb EH (1972) The development of microbodies and peroxisomal enzymes in greening bean leaves. J Cell Biol 56:500–518

    Article  Google Scholar 

  20. Hayashi M, Toriyama K, Kondo M, Kato A, Mano S, De Bellis L, Hayashi-Ishimaru Y, Yamaguchi K, Hayashi H, Nishimura M (2000) Functional transformation of plant peroxisomes. Cell Biochem Biophys 32:295–304

    Article  PubMed  CAS  Google Scholar 

  21. Hoepfner D, van den Berg M, Philippsen P, Tabak HF, Hettema EH (2001) A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 155:979–990

    Article  PubMed  CAS  Google Scholar 

  22. Hoepfner E, Schildknegt D, Braakman I, Philippsen P, Tabak HF (2005) Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122:85–95

    Article  PubMed  CAS  Google Scholar 

  23. Huang AHC, Trelease RN, Moore TS (1983) Plant Peroxisomes. American Society of Plant Physiologists Monograph Series. Academic, New York

    Google Scholar 

  24. Huang AHC (1992) Oil bodies and oleosins in seeds. Ann Rev Plant Physiol 43:177–200

    Article  CAS  Google Scholar 

  25. Hunt JE, Trelease RN (2004) Sorting pathway and molecular targeting signals for the Arabidopsis peroxin 3. Biochem Bioph Res Co 314:586–596

    Article  CAS  Google Scholar 

  26. Jedd G, Chua NH (2002) Visualization of peroxisomes in living plant cells reveals acto-myosin-dependent cytoplasmic streaming and peroxisome budding. Plant Cell Physiol 43:384–392

    Article  PubMed  CAS  Google Scholar 

  27. Kagawa T, Lord JM, Beevers H (1973) Origin and turnover of organelle membranes in castor bean endosperm. Plant Physiol 51:61–65

    Article  PubMed  CAS  Google Scholar 

  28. Kammerer S, Holzinger A, Welsch U, Roscher AA (1998) Cloning and characterization of the gene encoding the human peroxisomal assembly protein Pex3p. FEBS Lett 429:53–60

    Article  PubMed  CAS  Google Scholar 

  29. Kaneko Y, Newcomb EH (1987) Cytochemical-localization of uricase and catalase in developing root nodules of soybean. Protoplasma 140:1–12

    Article  Google Scholar 

  30. Kaneko Y, Newcomb EH (1990) Specialization for ureide biogenesis in the root nodules of black locust (Robinia pseudoacacia L), an amide exporter. Protoplasma 157:102–111

    Article  CAS  Google Scholar 

  31. Karnik SK, Trelease RN (2005) Arabidopsis peroxin 16 (AtPex16p) co-exists at steady state in peroxisomes and endoplasmic reticulum. Plant Physiol 138:1967–1983

    Article  PubMed  CAS  Google Scholar 

  32. Karnik SK, Trelease RN (2006) Arabidopsis peroxin 16 trafficks indirectly to pre-existing peroxisomes through endoplasmic reticulum and an intermediate transport compartment (vesicles). Plant Physiol (in revision)

    Google Scholar 

  33. Kindl H, Lazarow PB (2005) Peroxisomes and glyoxysomes. Ann NY Acad Sci 550

    Google Scholar 

  34. Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, Schrader M (2003) Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem 278:8597–8605

    Article  PubMed  CAS  Google Scholar 

  35. Koch A, Schneider G, Luers GH, Schrader M (2004) Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1. J Cell Sci 117:3995–4006

    Article  PubMed  CAS  Google Scholar 

  36. Kragt A, Voon-Brouwer T, van den Berg M, Distel B (2005) Endoplasmic-reticulum-directed Pex3p routes to peroxiosomes and restores peroxisome formation in a Saccharomyces cerevisiae pex3∆ strain. J Biol Chem 280:34350–34357

    Article  PubMed  CAS  Google Scholar 

  37. Kudielka RA, Kock H, Theimer RR (1981) Substrate-dependent formation of glyoxysomes in cell-suspension cultures of anise (Pimpinella anisum L). FEBS Lett 136:8–12

    Article  CAS  Google Scholar 

  38. Kunau W-H (2005) Peroxisome biogenesis: end of the debate. Curr Biol 15:R774–R776

    Article  PubMed  CAS  Google Scholar 

  39. Kunce CM, Trelease RN, Doman DC (1984) Ontogeny of glyoxysomes in maturing and germinated cotton seeds – a morphometric analysis. Planta 161:156–164

    Article  CAS  Google Scholar 

  40. Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530

    Article  PubMed  CAS  Google Scholar 

  41. Lazarow PB (2003) Peroxisome biogenesis: advances and conundrums. Curr Opin Cell Biol 15:489–497

    Article  PubMed  CAS  Google Scholar 

  42. Levine T (2004) Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends Cell Biol 14:483–490

    Article  PubMed  CAS  Google Scholar 

  43. Li X, Gould SJ (2003) The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. Biol Chem 278:17012–17020

    Article  CAS  Google Scholar 

  44. Lin Y, Sun L, Nguyen LV, Rachubinski RA, Goodman HM (1999) The Pex16p homolog SSE1 and storage organelle formation in Arabidopsis seeds. Science 284:328–330

    Article  PubMed  CAS  Google Scholar 

  45. Lin Y, Cluette-Brown JE, Goodman HM (2004) The peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis. Plant Physiol 135:814–827

    Article  PubMed  CAS  Google Scholar 

  46. Lingard MJ, Trelease RN (2006) Multiple Arabidopsis peroxin 11 homologs participate in induced (regulated) peroxisomal elongation and/or proliferation. J Cell Sci (in press)

    Google Scholar 

  47. Lisenbee CS, Karnik SK, Trelease RN (2003) Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic 4:491–501

    Article  PubMed  CAS  Google Scholar 

  48. Lisenbee CS, Lingard ML, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914

    Article  PubMed  CAS  Google Scholar 

  49. Mano S, Nakamori C, Hayashi M, Kato A, Kondo M, Nishimura M (2002) Distribution and characterization of peroxisomes in Arabidopsis by visualization with GFP: dynamic morphology and actin-dependent movement. Plant Cell Physiol 43:331–341

    Article  PubMed  CAS  Google Scholar 

  50. Mano S, Nakamori C, Kondo M, Hayashi M, Nishimura M (2004) An Arabidopsis dynamin-related protein, DRP3A, controls both peroxisomal and mitochondrial division. The Plant J 38:487–498

    Article  CAS  Google Scholar 

  51. Mathur J, Mathur N, Hulskamp M (2002) Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol 128:1031–1045

    Article  PubMed  CAS  Google Scholar 

  52. Miyagishima S, Itoh R, Toda K, Kuroiwa H, Nishimura M, Kuroiwa T (1999) Microbody proliferation and segregation cycle in the single-microbody alga Cyanidioschyzon merolae. Planta 208:326–336

    Article  CAS  Google Scholar 

  53. Mullen RT, Trelease RN (1996) Biogenesis and membrane properties of peroxisomes: Does the boundary membrane serve and protect? Trends Plant Sci 1:389–394

    Google Scholar 

  54. Mullen RT, Lisenbee CS, Miernyk JA, Trelease RN (1999) Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum. Plant Cell 11:2167–2185

    PubMed  CAS  Google Scholar 

  55. Mullen RT, Trelease RN (2000) The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J Biol Chem 275:16337–16344

    Article  PubMed  CAS  Google Scholar 

  56. Mullen RT, Flynn CR, Trelease RN (2001a) How are peroxisomes formed? The role of the endoplasmic reticulum and peroxins. Trends Plant Sci 6:256–261

    Article  PubMed  CAS  Google Scholar 

  57. Mullen RT, Lisenbee CS, Flynn CR, Trelease RN (2001b) Stable and transient expression of chimeric peroxisomal membrane proteins induces an independent zippering of peroxisomes and an endoplasmic reticulum subdomain. Planta 213:849–864

    Article  PubMed  CAS  Google Scholar 

  58. Mullen RT (2002) Targeting and import of matrix proteins into peroxisomes. In: Baker A, Graham IA (eds) Plant Peroxisomes. Kluwer Academic, Netherlands, p 339–384

    Chapter  Google Scholar 

  59. Murphy MA, Phillipson BA, Baker A, Mullen RT (2003) Characterization of the targeting signal of the Arabidopsis - 22kD integral peroxisomal membrane protein. Plant Physiol 133:813–828

    Article  PubMed  CAS  Google Scholar 

  60. Nebenführ A, Ritzenthaler C, Robinson DG (2002) Brefeldin A: Deciphering an enigmatic inhibitor of secretion. Plant Physiol 130:1102–1108

    Article  PubMed  Google Scholar 

  61. Newcomb EH, Tandon SR, Kowal RR (1985) Ultrastructural specialization for ureide production in uninfected cells of soybean root nodules. Protoplasma 125:1–12

    Article  Google Scholar 

  62. Nito K, Yamaguchi K, Kondo M, Hayashi M, Nishimura M (2001) Pumpkin peroxisomal ascorbate peroxidase is localized on peroxisomal membranes and unknown membranous structures. Plant Cell Physiol 42:20–27

    Article  PubMed  CAS  Google Scholar 

  63. Oksanen E, Haikio E, Sober J, Karnosky DF (2004) Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol 161:791–799

    Article  CAS  Google Scholar 

  64. Parsons M, Furuya T, Pal S, Kessler P (2001) Biogenesis and function of peroxisomes and glycosomes. Mol Biochem Parasitol 115:19–28

    Article  PubMed  CAS  Google Scholar 

  65. Passreiter M, Anton M, Lay D, Frank R, Harter C, Wieland FT, Gorgas K, Just WW (1998) Peroxisome biogenesis: Involvement of ARF and coatomer. J Cell Biol 141:373–383

    Article  PubMed  CAS  Google Scholar 

  66. Pool MR, Lopez-Huertas E, Baker A (1998) Characterization of intermediates in the process of plant peroxisomal protein import. EMBO J 17:6854–6862

    Article  PubMed  CAS  Google Scholar 

  67. Purdue PE, Lazarow PB (2001) Peroxisome biogenesis. Ann Rev Cell Dev Biol 17:701–752

    Article  CAS  Google Scholar 

  68. Sacksteder KA, Gould SJ (2000) The genetics of peroxisome biogenesis. Annu Rev Genet 34:623–652

    Article  PubMed  CAS  Google Scholar 

  69. Salomons FA, vanderKlei IJ, Kram AM, Harder W, Veenhuis M (1997) Brefeldin A interferes with peroxisomal protein sorting in the yeast Hansenula polymorpha. FEBS Lett 411:133–139

    Article  PubMed  CAS  Google Scholar 

  70. Schliebs W, Kunau WH (2004) Peroxisome membrane biogenesis: The stage is set. Curr Biol 14:R397-R399

    Article  PubMed  CAS  Google Scholar 

  71. Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA, Valle D, Schroer TA, Gould SJ (1998) Expression of PEX11 beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273:29607–29614

    Article  PubMed  CAS  Google Scholar 

  72. Schumann U, Wanner G, Veenhuis M, Schmid M, Gietl C (2003) AthPEX10, a nuclear gene essential for peroxisome and storage organelle formation during Arabidopsis embryogenesis. Proc Nat Acad Sci USA 100:9626–9631

    Article  PubMed  CAS  Google Scholar 

  73. South ST, Gould SJ (1999) Peroxisome synthesis in the absence of preexisting peroxisomes. J Cell Biol 144:255–266

    Article  PubMed  CAS  Google Scholar 

  74. South ST, Sacksteder KA, Li XL, Liu YF, Gould SJ (2000) Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J Cell Biol 149:1345–1359

    Article  PubMed  CAS  Google Scholar 

  75. South ST, Baumgart E, Gould SJ (2001) Inactivation of the endoplasmic reticulum protein translocation factor, Sec61p, or its homolog, Ssh1p, does not affect peroxisome biogenesis. Proc Nat Acad Sci USA 98:12027–12031

    Article  PubMed  CAS  Google Scholar 

  76. Sparkes IA, Baker A (2002) Peroxisome biogenesis and protein import in plants, animals and yeasts: enigma and variations? Mol Membr Biol 19:171–185

    Article  PubMed  CAS  Google Scholar 

  77. Sparkes IA, Brandizzi F, Slocombe SP, El-Shami M, Hawes C, Baker A (2003) An Arabidopsis pex10 null mutant is embryo lethal, implicating peroxisomes in an essential role during plant embryogenesis. Plant Physiol 133:1809–1819

    Article  PubMed  CAS  Google Scholar 

  78. Sparkes IA, Hawes C, Baker A (2005) AtPex2 and AtPex10 are targeted to peroxisomes independently of known endoplasmic reticulum trafficking routes. Plant Physiol 139:690–700

    Article  PubMed  CAS  Google Scholar 

  79. Subramani S (1996) Protein translocation into peroxisomes. J Biol Chem 271:32483–32486

    PubMed  CAS  Google Scholar 

  80. Subramani S, Koller A, Snyder WB (2000) Import of peroxisomal matrix and membrane proteins. Ann Rev Biochem 69:399–418

    Article  PubMed  CAS  Google Scholar 

  81. Tabak HF, Murk JL, Braakman I, Geuze HJ (2003) Peroxisomes start their life in the endoplasmic reticulum. Traffic 4:512–518

    Article  PubMed  CAS  Google Scholar 

  82. Tam YYC, Fagarasanu A, Fagarasanu M, Rachubinski RA (2005) Pex3p initiates the formation of a preperoxisomal compartment from a subdomain of the endoplasmic reticulum in Saccharomyces cerevisiae. J Biol Chem 280:34933–34939

    Article  PubMed  CAS  Google Scholar 

  83. Thoms S, Erdmann R (2005) Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation. FEBS J 272:5169–5181

    Article  PubMed  CAS  Google Scholar 

  84. Thieringer H, Moellers B, Dodt G, Kunau W-H, Driscoll M (2003) Modeling human peroxisome biogenesis disorders in the nematode Caenorhabditis elegans. J Cell Sci 116:1797–1894

    Article  PubMed  CAS  Google Scholar 

  85. Titorenko VI, Rachubinski RA (2001a) The life cycle of the peroxisome. Nat Rev Mol Cell Biol 2:357–368

    Article  PubMed  CAS  Google Scholar 

  86. Titorenko VI, Rachubinski RA (2001b) Dynamics of peroxisome assembly and function. Trends Cell Biol 11:22–29

    Article  PubMed  CAS  Google Scholar 

  87. Titorenko VI, Rachubinski RA (2004) The peroxisome: orchestrating important developmental decisons from inside the cell. J Cell Biol 164:641–645

    Article  PubMed  CAS  Google Scholar 

  88. Trelease RN (1984) Biogenesis of glyoxysomes. Annu Rev Plant Physio 35:321–347

    Article  CAS  Google Scholar 

  89. Trelease RN (2002) Peroxisomal biogenesis and acquisition of membrane proteins. In: Baker A, Graham IA (eds) Plant Peroxisomes. Kluwer Academic, Netherlands, p 305–335

    Chapter  Google Scholar 

  90. van der Klei IJ, Veenhuis M (2002) Peroxisomes: flexible and dynamic organelles. Curr Opin Cell Biol 14:500–505

    Article  PubMed  Google Scholar 

  91. Vaughn KC (1985) Structural and Cytochemical Characterization of 3 Specialized Peroxisome Types in Soybean. Physiologia Plantarum 64:1–12

    Article  CAS  Google Scholar 

  92. Veenhuis M, Salomons FA, van der Klei IJ (2000) Peroxisome biogenesis and degradation in yeast: A structure/function analysis. Microsc Res Tech 51:584–600

    Article  PubMed  CAS  Google Scholar 

  93. Voorn-Brouwer T, Kragt A, Rank HF, Distel B (2001) Peroxisomal membrane proteins are properly targeted to peroxisomes in the absence of COPI- and COPII-mediated vesicular transport. J Cell Sci 114:2199–2204

    PubMed  CAS  Google Scholar 

  94. Wanner G, Vigil EL, Theimer RR (1982) Ontogeny of microbodies (glyoxysomes) in cotyledons of dark-grown watermelon (Citrullus vulgaris Schrad.) seedlings—ultrastructural evidence. Planta 156:314–325

    Article  CAS  Google Scholar 

  95. Webb MA, Newcomb EH (1987) Cellular compartmentation of ureide biogenesis in root-nodules of cowpea (Vigna unguiculata (L) Walp.). Planta 172:162–175

    Article  CAS  Google Scholar 

  96. Yan M, Rayapuram N, Subramani S (2005) The control of peroxisome number and size during division and proliferation. Curr Opin Cell Biol 17:1–8

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for much of the research described in this chapter and its writing was from National Science Foundation Grant MCB-0091826 to RNT. Ms. Heather Gustafson is gratefully acknowledged for her skills and time involved in typing and assembling references for this chapter. Ms. Sheetal Karnik provided insightful discussion and encouragement as well as important unpublished data and ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard N. Trelease .

Editor information

David G. Robinson

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trelease, R.N., Lingard, M.J. (2006). Participation of the Plant ER in Peroxisomal Biogenesis. In: Robinson, D.G. (eds) The Plant Endoplasmic Reticulum. Plant Cell Monographs, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_058

Download citation

Publish with us

Policies and ethics