Skip to main content

Nitric Oxide in Cell-to-Cell Communication Coordinating the Plant Hypersensitive Response

  • Chapter
  • First Online:
Nitric Oxide in Plant Growth, Development and Stress Physiology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 5))

  • 879 Accesses

Abstract

The primary and probably only important role that NO. plays in the hypersensitive response is communication between dying cells and neighboring cells. NO. accumulates extracellularly immediately prior to programmed cell death of infected cells and inhibits extracellular H2O2-degrading enzymes, leading to H2O2 accumulation. NO. and/or H2O2 travel to adjacent cells, where H2O2 accumulation induces salicylic acid biosynthesis. Salicylic acid mediates the observed NO.-dependent potentiation of programmed cell death triggering. These effects appear to depend upon augmentation of plasma membrane depolarization by direct effects of salicylic acid; whereas delayed negative feedback on programmed cell death is gene expression-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Able AJ, Guest DI, Sutherland MW (1998) Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophthora parasitica var nicotianae. Plant Physiol 117:491–499

    Article  PubMed  CAS  Google Scholar 

  • Abramovitch RB, Martin GB (2004) Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol 7:356–364

    Article  PubMed  CAS  Google Scholar 

  • Ádám A, Farkas T, Somlyai G, Hevesi M, Király Z (1989) Consequence of O2 Generation during a bacterially induced hypersensitive reaction in tobacco: deterioration of membrane lipids. Physiol Mol Plant Path 34:13–26

    Article  Google Scholar 

  • Agrawal V, Zhang C, Shapiro AD, Dhurjati PS (2004) A dynamic mathematical model to clarify signaling circuitry underlying programmed cell death control in Arabidopsis disease resistance. Biotechnol Prog 20:426–442

    Article  PubMed  CAS  Google Scholar 

  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol 90:109–116

    Article  PubMed  CAS  Google Scholar 

  • Arancio O, Kiebler M, Lee CJ, Lev-Ram V, Tsien RY, Kandel ER, Hawkins RD (1996) Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell 87:1025–1035

    Article  PubMed  CAS  Google Scholar 

  • Bestwick CS, Bennett MH, Mansfield JW (1995) Hrp mutant of Pseudomonas syringae pv. phaseolicola induces cell wall alterations but not membrane damage leading to the hypersensitive reaction in lettuce. Plant Physiol 108:503–516

    PubMed  CAS  Google Scholar 

  • Bestwick CS, Brown IR, Mansfield JW (1998) Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiol 118:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Boccara M, Mills CE, Zeier J, Anzi C, Lamb C, Poole RK, Delledonne M (2005) Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host. Plant J 43:226–237

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    Article  PubMed  CAS  Google Scholar 

  • Bonamore A, Gentili P, Ilari A, Schinina ME, Boffi A (2003) Escherichia coli flavohemoglobin is an efficient alkylhydroperoxide reductase. J Biol Chem 278:22272–22277.

    Article  PubMed  CAS  Google Scholar 

  • Brunelli L, Crow JP, Beckman JS (1995) The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch Biochem Biophys 316:327–334

    Article  PubMed  CAS  Google Scholar 

  • Caro A, Puntarulo S (1999) Nitric oxide generation by soybean embryonic axes. Possible effect on mitochondrial function. Free Radic Res 31:S205-S212

    Article  PubMed  CAS  Google Scholar 

  • Century KS, Holub EB, Staskawicz BJ (1995) NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci USA 92:6597–6601

    Article  PubMed  CAS  Google Scholar 

  • Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E, Staskawicz BJ (1997) NDR1: a pathogen-induced component required for Arabidopsis disease resistance. Science 278:1963–1965.

    Article  PubMed  CAS  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Molec Plant-Microbe Interact 13:1380–1384

    Article  CAS  Google Scholar 

  • Clarke A, Mur LAJ, Darby RM, Kenton P (2005) Harpin modulates the accumulation of salicylic acid by Arabidopsis cells via apoplastic alkalinization. J Exp Bot 56:3129–3136

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Murgia I, Ederle D, Sbicego PF, Biondani A, Polverari A, Lamb C (2002) Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive response. Plant Physiol Biochem 40:605–610

    Article  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Coffey MJ, Neill SJ (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Letts 382:213–217

    Article  CAS  Google Scholar 

  • Devlin WS, Gustine DL (1992) Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction. Plant Physiol 100:1189–1195

    Article  PubMed  CAS  Google Scholar 

  • Do HM, Hong JK, Jung HW, Kim SH, Ham JH, Hwang BK (2003) Expression of peroxidase-like genes, H2O2 production, and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. vesicatoria in Capsicum annuum. Molec Plant-Microbe Interact 16:196–205

    Article  CAS  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to hyphal wall components. Physiol Plant Path 23:345–357

    Article  CAS  Google Scholar 

  • Doke N, Ohashi Y (1988) Involvement of an O-2generating system in the induction of necrotic lesions on tobacco leaves infected with Tobacco Mosaic Virus. Physiol Molec Plant Pathol 32:163–175

    Article  CAS  Google Scholar 

  • Dorey S, Kopp M, Geoffroy P, Fritig B, Kauffmann S (1999) Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin. Plant Physiol 121:163–171

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed  CAS  Google Scholar 

  • Genoud T, Buchala AJ, Chua N-H, Métraux J-P (2002) Phytochrome signaling modulates the SA-perceptive pathway in Arabidopsis. Plant J 31:87–95

    Article  PubMed  CAS  Google Scholar 

  • Glass ADM, Dunlop J (1974) Influence of phenolic acids on ion uptake: IV. depolarization of membrane potentials. Plant Physiol 54:855–858

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Gordon LK, Minibayeva FV, Ogorodnikova TI, Rakhmatullina DF, Tzentzevitzky AN, Kolesnikov OP, Maksyutin DA, Valitova JN (2002) Salicylic acid induces dissipation of the proton gradient on the plant cell plasma membrane. Doklady Biol Sci 387:581–583

    Article  CAS  Google Scholar 

  • Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23:441–450

    Article  PubMed  CAS  Google Scholar 

  • Heath MC (1998) Involvement of reactive oxygen species in the response of resistant (hypersensitive) or susceptible cowpeas to the cowpea rust fungus. New Phytol 138:251–263

    Article  CAS  Google Scholar 

  • Huang J, Knopp JA (1998) Involvement of nitric oxide in Ralstonia solanacearum-induced hypersensitive reaction in tobacco. In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt disease: molecular and ecological aspects. INRA and Springer Editions, Berlin, Germany, pp 218–224

    Google Scholar 

  • Igamberdiev AU, Seregélyes C, Manac'h N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102

    Article  PubMed  CAS  Google Scholar 

  • Keppler LD, Novacky A (1986) Involvement of membrane lipid peroxidation in the development of a bacterially induced hypersensitive reaction. Phytopathol 76:104–108

    Article  CAS  Google Scholar 

  • Klepper L (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ 13:537–542

    Article  CAS  Google Scholar 

  • Kojima H, Urano Y, Kikuchi K, Higuchi T, Hirata Y, Nagano T (1999) Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Ed 38:3209–3212

    Article  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Macrì F, Vianello A, Pennazio S (1986) Salicylate-collapsed membrane potential in pea stem mitochondria. Physiol Plant 67:136–140

    Article  Google Scholar 

  • Martinez C, Baccou J-C, Bresson E, Baissac Y, Daniel J-F, Jalloul A, Montillet J-L, Geiger J-P, Assigbetsé K, Nicole M (2000) Salicylic acid mediated by the oxidative burst is a key molecule in local and systemic responses of cotton challenged by an avirulent race of Xanthomonas campestris pv. malvacearum. Plant Physiol 122:757–766

    Article  PubMed  CAS  Google Scholar 

  • Martinez C, Montillet JL, Bresson E, Agnel JP, Dai GH, Daniel JF, Geiger JP, Nicole M (1998) Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum Race 18. Molec. Plant-Microbe Interact 11:1038–1047

    Article  CAS  Google Scholar 

  • Membrillo-Hernández J, Ioannidis N, Poole RK (1996) The flavohaemoglobin (HMP) of Escherichia coli generates superoxide in vitro and causes oxidative stress in vivo. FEBS Letts 382:141–144

    Article  Google Scholar 

  • Moreau RA, Osman SF (1989) The properties of reducing agents released by treatment of Solanum tuberosum with elicitors from Phytophthora infestans. Physiol Mol Plant Path 35:1–10

    Article  CAS  Google Scholar 

  • Mur LAJ, Kenton P, Draper J (2005a) In Planta measurements of oxidative bursts elicited by avirulent and virulent bacterial pathogens suggests that H2O2is insufficient to elicit cell death in tobacco. Plant Cell Environ 28:548–561

    Article  CAS  Google Scholar 

  • Mur LAJ, Santosa IE, Laarhoven LJJ, Holton NJ, Harren FJM, Smith AR (2005b) Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae pathovars. Plant Physiol 138:1247–1258

    Article  PubMed  CAS  Google Scholar 

  • Naton B, Hahlbrock K, Schmelzer E (1996) Correlation of rapid cell death with metabolic changes in fungus-infected, cultured parsley cells. Plant Physiol 112:433–444

    PubMed  CAS  Google Scholar 

  • Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    Article  PubMed  CAS  Google Scholar 

  • Pavlovkin J, Novacky A, Ullrich-Eberius CI (1986) Membrane potential changes during bacteria-induced hypersensitive reaction. Physiol Mol Plant Pathol 28:125–135

    Article  CAS  Google Scholar 

  • Pike SM, Zhang X-C, Gassmann W (2005) Electrophysiological characterization of the Arabidopsis avrRpt2-specific hypersensitive response in the absence of other bacterial signals. Plant Physiol 138:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Prats E, Mur LAJ, Sanderson R, Carver TLW (2005) Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp. hordei. Molec Plant Pathol 6:65–78

    Article  CAS  Google Scholar 

  • Rate DN, Cuenca JV, Bowman GR, Guttman DS, Greenberg JT (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11:1695–1708

    Article  PubMed  CAS  Google Scholar 

  • Rate DN, Greenberg JT (2001) The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Plant J 27:203–211

    Article  PubMed  CAS  Google Scholar 

  • Rees DD, Palmer RMJ, Moncada S (1989) Role of Endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86:3375–3378

    Article  PubMed  CAS  Google Scholar 

  • Ritter C, Dangl JL (1996) Interference between Two specific pathogen recognition events mediated by distinct plant disease resistance genes. Plant Cell 8:251–257

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Sakurao S-H, Fukunaga K, Matsubara T, Ueda-Hashimoto M, Tsukamoto S, Takahashi M, Morikawa H (2004) Three distinct Arabidopsis hemoglobins exhibit peroxidase-like activity and differentially mediate nitrite-dependent protein nitration. FEBS Letts 572:27–32

    Article  CAS  Google Scholar 

  • Shapiro AD (2000) Using Arabidopsis mutants to delineate disease resistance signaling pathways. Can J Plant Pathol 22:199–216

    Article  CAS  Google Scholar 

  • Shapiro AD (2005) Nitric oxide signaling in plants. Vitamins and Hormones 72:339–398

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AD, Gutsche AT (2003) Capillary electrophoresis-based profiling and quantitation of total salicylic acid and related phenolics for analysis of early signaling in Arabidopsis disease resistance. Anal Biochem 320:223–233

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AD, Zhang C (2001) The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. Plant Physiol 127:1089–1101

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    Article  PubMed  CAS  Google Scholar 

  • Tada Y, Mori T, Shinogi T, Yao N, Takahashi S, Betsuyaku S, Sakamoto M, Park P, Nakayashiki H, Tosa Y, Mayama S (2004) Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat. Molec Plant-Microbe Interact 17:245–253

    Article  CAS  Google Scholar 

  • Takahashi S, Yamasaki H (2002) Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Letts 512:145–148

    Article  CAS  Google Scholar 

  • Tenhaken R, Rübel C (1997) Salicylic acid is needed in hypersensitive cell death in soybean but does not act as a catalase inhibitor. Plant Physiol 115:291–298

    PubMed  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2in plants. H2O2Accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrBohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:523–528

    Article  CAS  Google Scholar 

  • van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH - O-2synthase from other NAD(P)H oxidoreductases. Plant Physiol 115:543–550

    PubMed  Google Scholar 

  • Yalpani N, Silverman P, Wilson TMA, Kleier DA, Raskin I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–818

    Article  PubMed  CAS  Google Scholar 

  • Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C (2004a) Genetic elucidation of nitric oxide signaling in incompatible plant–pathogen interactions. Plant Physiol 136:2875–2886

    Article  PubMed  CAS  Google Scholar 

  • Zeier J, Pink B, Mueller MJ, Berger S (2004b) Light conditions influence specific defence responses in incompatible plant–pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta 219:673–683

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Czymmek KJ, Shapiro AD (2003) Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response. Mol Plant-Microbe Interact 16:962–972

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Gutsche AT, Shapiro AD (2004) Feedback control of the Arabidopsis hypersensitive response. Molec Plant-Microbe Interact 17:357–365

    Article  CAS  Google Scholar 

  • Zhang C, Shapiro AD (2002) Two Pathways act in an additive rather than obligatorily synergistic fashion to induce systemic acquired resistance and PR gene expression. BMC Plant Biology 2:9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This publication is contribution #0013 for the Center for Biomolecular Science and Engineering, Florida Gulf Coast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan D. Shapiro .

Editor information

Lorenzo Lamattina Joseph C. Polacco

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shapiro, A.D. (2006). Nitric Oxide in Cell-to-Cell Communication Coordinating the Plant Hypersensitive Response. In: Lamattina, L., Polacco, J.C. (eds) Nitric Oxide in Plant Growth, Development and Stress Physiology. Plant Cell Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2006_094

Download citation

Publish with us

Policies and ethics